:::: MENU ::::

Posts Categorized / Apache

  • Jun 20 / 2022
  • Comments Off on Seputar Big Data Edisi #84
AI, Apache, Artificial Intelligece, Big Data, Blockchain, Cryptocurrency, Google, Implementation, Komunitas, Social Media

Seputar Big Data Edisi #84

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama pertengahan pertama bulan juni 2022.

Artikel dan berita

  1. LaMDA and the Sentient AI Trap
    Google baru-baru ini memberikan status cuti administratif kepada Blake Lemoine, peneliti Google AI, setelah yang bersangkutan mempublikasikan klaim bahwa LaMDA, sebuah model bahasa yang dirancang untuk berkomunikasi dengan manusia, hidup, memiliki akal dan empati. Lemoine bahkan menuntut diberikannya perwakilan hukum untuk LaMDA. Sementara itu, para ahli di bidang etika menyatakan bahwa perdebatan tentang apakah sebuah model AI memiliki kesadaran sebagai makhluk hidup, justru mengalihkan perhatian dari masalah yang lebih penting dan nyata, seperti kolonialisme AI, salah tangkap akibat bias, dll.
  2. Social Engineering Kill–Chain: Predicting, Minimizing & Disrupting Attack Verticals
    Social engineering adalah modus yang menarik bagi penjahat saiber, karena dengan biaya dan resiko rendah, dapat memberikan keberhasilan tinggi. Pada kenyataannya, meskipun teknologi cybersecurity semakin maju, kerentanan keamanan oleh manusia tetap sama. Dalam Cybersecurity Insight Reports menyatakan bahwa serangan rekayasa sosial dan human error sebagai salah satu dari 3 ancaman teratas selama beberapa tahun terakhir. Artikel ini membahas dengan cukup dalam mengenai rekayasa sosial dalam cybersecurity, serta langkah yang perlu diambil untuk mengatasinya.
  3. ‘The Music Has Stopped’: Crypto Firms Quake as Prices Fall
    Seiring dengan goncangnya pasar cryptocurrency, perusahaan-perusahaan kripto memberhentikan staf, membekukan penarikan, dan melakukan berbagai tindakan untuk membendung kerugian. Hal ini menimbulkan banyak pertanyaan tentang kesehatan dan kestabilan ekosistem kripto secara umum.
  4. Big Data Dukung Pupuk Kaltim Raup Laba Bersih Rp3,19 Triliun
    Setelah membukukan laba mengesankan pada tahun 2021, senilai Rp 6,17 triliun, terbesar dalam sejarahnya, PT Pupuk Kaltim (PKT) memulai 2022 dengan optimistis. Pada kuartal 1 2022, PKT membukukan laba bersih Rp3,19 triliun, meningkat hampir empat kali lipat dibandingkan dengan kuartal 1 2021 (year on year).Salah satu kunci kesuksesan mereka adalah transformasi digital untuk meningkatkan kinerja, serta diperkuat dengan pemanfaatan Big Data dalam program MAKMUR, sebuah program kemitraan pertanian terpadu yang dipelopori PKT.
  5. Future of UK Defence Artificial Intelligence Launched
    Pemerintah Inggris mengungkapkan rencana untuk masa depan teknologi pertahanan Kecerdasan Buatan (AI) Inggris yang mutakhir pada London Tech Week AI Summit. Strategi dan kebijakan tentang penggunaan AI yang ‘Ambisius, Aman, dan Bertanggung Jawab’ untuk mendukung Pusat Pertahanan AI yang baru, yang akan menjadi pusat visioner untuk mendukung dan mengembangkan teknologi ini di seluruh Angkatan Bersenjata Inggris.Pemerintah Inggris mengungkapkan rencana untuk masa depan teknologi pertahanan Kecerdasan Buatan (AI) Inggris yang mutakhir pada London Tech Week AI Summit. Strategi dan kebijakan tentang penggunaan AI yang ‘Ambisius, Aman, dan Bertanggung Jawab’ untuk mendukung Pusat Pertahanan AI yang baru, yang akan menjadi pusat visioner untuk mendukung dan mengembangkan teknologi ini di seluruh Angkatan Bersenjata Inggris.

Tutorial dan pengetahuan teknis

  1. R Fundamentals – From Syntax to Control Structures
    Pengenalan dasar mengenai R, mulai dari apakah bahasa R, bagaimana menulis kode dalam R, komponen dan utilitas RStudio. Artikel ini bertujuan untuk membantu dalam mengenal sintaks dan fungsi umum dari bahasa R, dan menggunakan RStudio untuk menulis serta mengeksekusi kode R untuk melakukan operasi dasar
  2. Modernizing Testing With Data Pipelines
    Pelajari bagaimana sintesis data dan data pipelines dapat menawarkan solusi yang scalable untuk membuat data yang konsisten serta menyerupai kebutuhan dunia nyata, untuk kebutuhan pengujian sistem.
  3. 3 Ways Understanding Bayes Theorem Will Improve Your Data Science
    Teorema Bayes memberikan cara untuk mengupdate keyakinan kita berdasarkan bukti baru, dengan mempertimbangkan kekuatan keyakinan kita sebelumnya. Dengan menggunakan teorema Bayes, kita berusaha menjawab pertanyaan: bagaimana kemungkinan hipotesis saya berdasarkan bukti baru?
    Artikel ini berbicara tentang tiga cara agar Teorema Bayes dapat meningkatkan kemampuan Data Science kita.
  4. An End-to-End Guide to Publish Your Python Package
    Artikel ini merupakan demo end-to-end untuk melakukan code sharing. Proyek ini bertujuan untuk membantu Anda memahami cara memublikasikan modul/paket python dengan benar di PyPI secara eksternal dan membagikan pekerjaan dengan kolega Anda secara internal.
  5. Docker for Data Science: What every data scientist should know about Docker
    Saat ini Docker sudah menjadi kelaziman bagi data saintis, karena memudahkan untuk melakukan deployment aplikasi beserta dependensinya, tanpa ‘membahayakan’ sistem secara umum. Untuk itu seorang data saintis setidaknya perlu mengetahui apa itu docker dan bagaimana membuat kontainer dengan docker.
  6. Using Normalization Layers to Improve Deep Learning Models
    Jika normalisasi input membantu meningkatkan kinerja model Deep Learning, apakah standarisasi input ke setiap layer dapat membantu meningkatkan kinerja model juga?
    Artikel ini membahas mengenai serba-serbi layer normalisasi serta batch normalization, sebuah teknik untuk menstandarisasi input ke setiap layer di seluruh batch.
  7. Data Statistics and Analysis With Java and Python
    Java dan Python adalah dua bahasa komputer paling populer yang digunakan saat ini. Keduanya sangat matang dan menyediakan alat dan ekosistem teknologi untuk mendukung pengembangan solusi untuk masalah menantang yang muncul di dunia data science. Penting untuk memahami bagaimana keduanya menangani masalah yang berbeda, serta keunggulan dan kelemahan masing-masing. Kapan perlu memilih salah satu, dan kapan menggabungkan keduanya.Artikel ini menjelaskan mengenai cara menganalisis data tabular menggunakan Java Streams dan Python Pandas, serta membandingkan bagaimana kinerja dan skala untuk sejumlah besar data.
  8. [FREE Ebook] IPython Cookbook, Second Edition (2018)
    IPython Cookbook, Second Edition (2018) by Cyrille Rossant. Python merupakan salah satu bahasa pemrograman terpopuler untuk data science dan komputasi numerik. IPython memberikan antarmuka interaktif yang efisien untuk analisis dan visualisasi data.Buku ini berisi banyak resep yang praktis untuk komputasi numerik dan analisis data. Menjelaskan pengenalan dasar hingga trik canggih IPython/Jupyter, untuk membantu Anda menulis kode yang lebih baik dan lebih cepat.Bagian pertama buku ini mencakup teknik pemrograman: kualitas kode dan reproduksibilitas, optimalisasi kode, komputasi paralel, serta graphic card programming. Bagian kedua membahas data science, statistik, machine learning, pemrosesan sinyal dan citra, dynamical system, pemrosesan data GIS, serta matematika murni dan terapan.

Rilis Produk

  1. Apache Flume 1.10.0 released
    Apache Flume team mengumumkan release Flume versi 1.10.0.
    Flume adalah service terdistribusi, handal, dan efektif untuk mengumpulkan, meng-agregasi, dan memindahkan log data berukuran besar. Flume 1.10.0 memperbaiki CVE-2022-25167, vulnerability di JMSSource yang berkaitan dengan penggunaan JNDI.
  2. Apache Impala 4.1.0 release
    Tim Apache Impala mengumumkan rilis Impala 4.1.0. Impala adalah mesin SQL terdistribusi berkinerja tinggi. Rilisnya tersedia di: https://impala.Apache.org/downloads.html
  3. Apache SkyWalking 9.1.0 released
    SkyWalking: alat monitor kinerja aplikasi untuk Sistem terdistribusi, yang dirancang khusus untuk microservice, cloud native, dan arsitektur berbasis container (Docker, Kubernetes, Mesos).Rilis ini berisi sejumlah fitur baru, perbaikan bug, dan peningkatan dari versi 9.0.0.
  4. OpenNLP 2.0.0 released
    Apache OpenNLP library adalah toolkit berbasis pembelajaran mesin untuk pemrosesan teks bahasa alami. Mendukung berbagai proses NLP yang paling umum, seperti tokenisasi, segmentasi kalimat, part-of-speech tagging, ekstraksi named-entity, chunking, dan parsing.
  5. Apache Hop 2.0.0
    Rilis 2.0.0 ini merupakan rilis major yang mencakup penyelesaian 151 tiket.Hop adalah platform integrasi data open source yang mudah digunakan, cepat dan fleksibel.Hop bertujuan bertujuan untuk memfasilitasi semua aspek orkestrasi data dan metadata. Pengembangan visual memungkinkan developer menjadi lebih produktif.
  6. Apache Bigtop 3.1.0 released
    Bigtop adalah proyek Apache Foundation untuk Infrastructure Engineer dan Data Scientist yang membutuhkan packaging, pengujian, dan konfigurasi komprehensif komponen big data open source terkemuka. Bigtop mendukung berbagai komponen/proyek, termasuk di antaranya Hadoop, HBase, Spark, dll.
    Beberapa highlight dari rilis ini meliputi:

    • Dukungan untuk Debian 11, Fedora 35, dan Rocky Linux 8
    • Upgrade terhadap beberapa komponen misalnya, HBase, Kafka, Spark, Zeppelin , ZooKeeper, dll.

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
  • Apr 08 / 2022
  • Comments Off on Seputar Big Data Edisi #83
AI, Apache, Artificial Intelligece, Big Data, Google, Implementation, IoT, Komunitas, machine learning

Seputar Big Data Edisi #83

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data, Data Science, dan AI, yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama bulan Maret 2022

Artikel dan berita

  1. Google uses deep learning to design faster, smaller AI chips
    Googler dan akademisi UC Berkeley menemukan cara menggunakan kecerdasan buatan untuk merancang chip yang lebih cepat dan lebih kecil, yang dapat mengakselerasi kecerdasan buatan.

    Para peneliti mengatakan, mereka telah mengembangkan pendekatan deep learning bernama PRIME, yang menghasilkan arsitektur chip AI dengan menggambar dari cetak biru dan catatan perhitungan kinerja yang ada. Mereka mengklaim pendekatan ini dapat menghasilkan desain dengan latensi lebih rendah dan membutuhkan lebih sedikit ruang daripada akselerator EdgeTPU dalam lingkungan produksi Google, maupun desain lain yang dibuat menggunakan tools tradisional.

    Paper dapat diakses di : https://arxiv.org/abs/2110.11346

  2. A Decade of Deep Learning: How the AI Startup Experience Has Evolved
    Dalam interview ini, Richard Socher membahas sejumlah topik, termasuk: berbagai perubahan terkait startup AI dalam dekade terakhir; perbedaan antara penerapan AI untuk perusahaan startup, perusahaan besar, maupun dunia akademis; dan bagaimana teknik machine learning baru, seperti model transformator, memberdayakan perusahaan untuk membangun produk canggih dengan sumber daya yang jauh lebih kecil dibanding yang mereka butuhkan sebelumnya.

  3. Basarnas akan Diperkuat Sistem Informasi Geografis, Analisa Big Data hingga AI
    Kepala Badan Nasional Pencarian dan Pertolongan (Basarnas), Marsekal Madya TNI Henri Alfiandi mengungkapkan, pihaknya melakukan operasi penyelamatan sebanyak 2.264 kali di tahun 2021. Operasi penyelamatan yang dilakukan Basarnas itu terdiri dari kecelakaan pesawat, kapal, bencana hingga kondisi membahayakan manusia.
    Henri menyampaikan Basarnas bermitra dengan Esri Indonesia sebagai penyedia solusi geospasial di Indonesia untuk meningkatkan pemanfaatan teknologi Sistem Informasi Geografis (SIG), Analisa Big Data, dan Teknologi Kecerdasan Buatan (AI).

  4. Pakar: Jangan Percaya Big Data Luhut Jika Tak Berani Dibuka
    Pendiri Drone Emprit, Ismail Fahmi meminta publik untuk tidak mudah percaya terhadap pihak yang mengklaim memiliki big data namun enggan transparan. Dia merespons pernyataan Menko Marves Luhut Binsar Pandjaitan yang menyebut 110 juta orang di media sosial setuju Pemilu 2024 ditunda.

    “Ketika ada yang klaim big data, tapi tanpa buka metodologinya, itu jangan langsung dipercaya. Jadi harus terbuka metodologinya, supaya peneliti lain bisa replikasi ulang klaimnya,” kata Ismail dalam sebuah diskusi di Twitter, Senin (21/3)

  5. How Are Big Data, AI & Social Media Used To Hack Democracy?
    Bisakah demokrasi diretas? Artinya, dapatkah cara berpikir dan apa yang kita pikirkan dipengaruhi tanpa sepengetahuan kita? Gaia Rubera, kepala Department of Marketing and Amplifon Chair in Customer Science di Universitas Bocconi, berpendapat bahwa pertanyaan-pertanyaan ini menjadi semakin penting dalam beberapa tahun terakhir. Menurut Gaia, penggunaan big data, kecerdasan buatan (AI), dan media sosial untuk mencampuri proses pemilu dan mendorong penyebaran informasi yang salah telah mengalami peningkatan selama beberapa tahun terakhir, dan menimbulkan ancaman serius bagi masyarakat.

  6. Auto-generated Summaries in Google Docs
    Salah satu permasalahan utama yang sering dihadapi dalam pengelolaan dokumen adalah bagaimana mendapatkan gambaran singkat isi dokumen dengan cepat untuk dapat memprioritaskan dan memperlakukan dokumen itu dengan tepat dan efektif. Menyusun ringkasan dokumen dapat menjadi tantangan kognitif dan memakan waktu, terlebih ketika dokumen yang yang harus ditangani bervolume besar.
    Untuk mengatasi hal ini, Google Documents kini secara otomatis membuat saran untuk membantu penulis dokumen dalam membuat ringkasan konten, jika tersedia. Artikel ini menjelaskan bagaimana fitur ini diaktifkan menggunakan model pembelajaran mesin yang ‘memahami’ teks dokumen dan, setelah ‘yakin’, menghasilkan 1-2 kalimat deskripsi bahasa alami dari konten dokumen.
    Fitur ini saat ini hanya tersedia untuk pelanggan Google Workspace untuk bisnis.

  7. Andrew Ng predicts the next 10 years in AI
    Wawancara menarik dari VentureBeat dengan Andrew Ng mengenai “pendekatan data-centric” untuk AI, bagaimana cara kerjanya di dunia nyata, serta gambaran besar AI saat ini.

    Sebagai pakar dalam computer vision, Ng percaya bahwa pada suatu saat, pers dan publik akan mendeklarasikan model computer vision sebagai sebuah basis model. Namun memprediksi dengan tepat kapan itu akan terjadi adalah cerita lain. Bagaimana kita akan sampai di sana?

Tutorial dan pengetahuan teknis

  1. Machine learning and phone data can improve targeting of humanitarian aid
    Pandemi COVID-19 sangat berdampak pada banyak negara berpenghasilan rendah dan menengah, menyebabkan kerawanan pangan yang meluas dan penurunan tajam dalam standar hidup. Menanggapi krisis ini, pemerintah dan organisasi kemanusiaan di seluruh dunia telah mendistribusikan bantuan sosial kepada lebih dari 1,5 miliar orang. Penentuan target merupakan tantangan utama dalam mengelola program-program ini: sangat sulit untuk dapat secara cepat mengidentifikasi mereka yang paling membutuhkan dengan data yang tersedia. Dalam artikel ini ditunjukkan bahwa data dari jaringan telepon seluler dapat membantu penentuan target bantuan kemanusiaan. Pendekatan yang digunakan adalah data survei tradisional untuk melatih model pembelajaran mesin guna mengenali pola kemiskinan dari data ponsel; model ini kemudian dapat memprioritaskan bantuan kepada pelanggan seluler termiskin.

  2. A method to automatically generate radar-camera datasets for deep learning applications
    Para peneliti di University of Arizona baru-baru ini mengembangkan pendekatan baru untuk secara otomatis menghasilkan kumpulan data yang berisi gambar kamera-radar berlabel. Pendekatan yang dipresentasikan dalam makalah yang diterbitkan di IEEE Robotics and Automation Letters ini menggunakan algoritma pendeteksian objek yang sangat akurat pada aliran gambar kamera (disebut YOLO) dan teknik asosiasi (dikenal sebagai algoritma Hungaria) untuk pelabelan radar point-cloud.

  3. Is DataOps more than DevOps for data?
    DataOps dan DevOps adalah pendekatan kolaboratif antara pengembang dan tim operasional IT. Tren dimulai dengan DevOps terlebih dahulu. Pendekatan komunikasi dan kolaborasi ini kemudian diterapkan pada pengolahan data. Kedua metode ini sama-sama berprinsip bahwa kolaborasi adalah pendekatan utama untuk pengembangan aplikasi dan tim operasi TI, akan tetapi masing-masing menargetkan area operasi yang berbeda.

  4. Data Visualization in Python with matplotlib, Seaborn and Bokeh
    Visualisasi data adalah aspek penting dari semua aplikasi AI dan machine learning. Kita mendapatkan berbagai insight penting dari data melalui representasi grafis yang berbeda. Dalam tutorial ini, kita akan berbicara tentang beberapa opsi untuk visualisasi data dengan Python. Menggunakan dataset MNIST dan library Tensorflow untuk pemrosesan angka dan manipulasi data. Untuk mengilustrasikan berbagai metode dalam membuat berbagai jenis grafik, akan digunakan matplotlib, Seaborn dan Bokeh.

  5. A guide to implementing DevSecOps
    Panduan yang dapat diunduh ini dapat membantu Anda memetakan transformasi DevOps ke DevSecOps di organisasi Anda.

  6. Ploomber vs Kubeflow: Making MLOps Easier
    Artikel singkat ini mencoba menangkap perbedaan utama antara tools MLops Ploomber dan Kubeflow. Membahas beberapa latar belakang tentang apa itu Ploomber, pipeline Kubeflow, dan bagaimana keduanya dapat memudahkan implementasi dan operasional.

Rilis Produk

  1. Apache IoTDB 0.13.0 released
    Tim Apache IoTDB mengumumkan rilis Apache IoTDB 0.13.0.
    Apache IoTDB (Database untuk Internet of Things) adalah database native IoT dengan kinerja tinggi untuk manajemen dan analisis data, dapat diterapkan di edge dan cloud.
    Versi ini adalah versi major IoTDB, yang mencakup sejumlah fitur dan peningkatan baru

  2. Apache Qpid Proton 0.37.0 released
    Komunitas Apache Qpid (https://qpid.apache.org) mengumumkan ketersediaan segera Apache Qpid Proton 0.37.0.
    Apache Qpid Proton adalah messaging library untuk Advanced Message Queuing Protocol 1.0 (AMQP 1.0, ISO/IEC 19464, https://www.amqp.org ). Qpid Pronton dapat digunakan dalam berbagai aplikasi messaging termasuk broker, klien, router, bridge, proxy, dan banyak lagi.

  3. Apache SeaTunnel(Incubating) 2.1.0 released
    Tim Apache SeaTunnel(Incubating) mengumumkan rilis Apache SeaTunnel 2.1.0.
    SeaTunnel: SeaTunnel(Incubating) adalah platform integrasi data berkinerja tinggi yang terdistribusi untuk sinkronisasi dan transformasi data sangat besar (offline & real-time).

  4. Apache Tuweni (incubating) 2.2.0-incubating released
    Tim Apache Tuweni mengumumkan rilis Apache Tuweni (inkubasi) 2.2.0.
    Apache Tuweni adalah seperangkat library dan tools untuk membantu pengembangan blockchain dan perangkat lunak terdesentralisasi lainnya di Java dan bahasa JVM lainnya.
    Mencakup library byte tingkat rendah, codec serialisasi dan deserialisasi (misalnya RLP), berbagai fungsi dan primitive kriptografi, dan banyak utilitas bermanfaat lainnya. Tuweni dikembangkan untuk JDK 11 atau lebih tinggi, dan tergantung pada berbagai perpustakaan FOSS lainnya.

  5. Apache Geode 1.13.8
    Komunitas Apache Geode mengumumkan ketersediaan Apache Geode 1.13.8.
    Geode adalah platform manajemen data yang menyediakan model konsistensi seperti database, pemrosesan transaksi yang andal, dan arsitektur shared-nothing untuk mempertahankan kinerja latensi yang sangat rendah dengan pemrosesan konkurensi tinggi. Apache Geode 1.13.8 berisi sejumlah perbaikan bug. Pengguna sangat disarankan untuk meningkatkan ke rilis 1.14.x terbaru (saat ini 1.14.3).

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
  • Oct 04 / 2021
  • Comments Off on Seputar Big Data Edisi #82
Apache, Artificial Intelligece, Big Data, machine learning, Social Media

Seputar Big Data Edisi #82

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu pertama bulan Oktober 2021

Artikel dan berita

  1. Old coal plant is now mining bitcoin for a utility company
    Meskipun tidak memiliki wujud fisik, ternyata diperlukan konsumsi begitu banyak daya untuk menambang Bitcoin. Komputer-komputer di seluruh dunia memakan listrik setara dengan kebutuhan sebuah negara seukuran Belanda atau Polandia untuk menambangnya. Begitu pentingnya faktor listrik ini, sehingga sebuah perusahaan swasta bahkan memiliki pembangkit listrik sendiri untuk melakukan penambangan bitcoin. Salah satunya adalah perusahaan swasta di Amerika, yang meletakkan data center mereka di dekat pembangkit listrik tenaga batubara, sekitar 10 mil di luar St. Louis. Pembangkit listrik tersebut sempat mengalami kesulitan untuk mempertahankan operasionalnya agar tetap menguntungkan ketika harga listrik anjlok sebelumnya.
  2. The limitations of AI safety tools
    Pada tahun 2019, OpenAI merilis Safety Gym, seperangkat alat untuk mengembangkan model AI yang memperhatikan “batasan keamanan” tertentu, khususnya untuk reinforcement learning. Saat itu, OpenAI mengklaim bahwa Safety Gym dapat digunakan untuk membandingkan keamanan sebuah algoritma dan sejauh mana algoritma tersebut dapat menghindari kesalahan yang fatal saat belajar, misalnya menghindari tabrakan.
    Sejak itu, Safety Gym telah digunakan dalam mengukur kinerja algoritma yang diusulkan dari OpenAI, serta para peneliti dari University of California, Berkeley, dan University of Toronto. Akan tetapi beberapa ahli mempertanyakan apakah “alat keamanan” AI ini benar-benar berfungsi efektif seperti yang dinyatakan oleh pembuatnya.
  3. Researchers attempt an open source alternative to GitHub’s Copilot
    Pada bulan Juni lalu OpenAI dan GitHub meluncurkan Copilot, service yang memberikan saran berupa serangkaian kode di dalam lingkungan pengembangan seperti Microsoft Visual Studio. Didukung oleh model AI yang disebut Codex — yang diekspos oleh OpenAI melalui API — Copilot dapat menerjemahkan bahasa alami ke dalam kode dalam berbagai bahasa pemrograman, mengartikan perintah dalam bahasa Inggris dan mengeksekusinya.
    Saat ini sebuah komunitas sedang berupaya untuk membuat alternatif open source untuk model Copilot dan Codex, yang disebut dengan GPT Code Clippy. Para kontributor berharap untuk dapat membuat sebuah pair programmer AI yang memungkinkan para peneliti untuk mempelajari model AI skala besar yang dilatih menggunakan source code, untuk memahami kelebihan dan keterbatasannya.
  4. Facebook whistleblower to testify at U.S. Senate hearing next week
    Dua senator AS menyatakan bahwa seorang whistleblower Facebook akan bersaksi di hadapan sidang Senat minggu depan mengenai apa yang mereka sebut sebagai ‘efek toksik’ media sosial pada pengguna usia muda. Kesaksian pelapor ini akan sangat penting untuk memahami apa yang diketahui Facebook tentang efek racun platformnya terhadap pengguna muda, sejak kapan mereka mengetahui, dan apa telah yang mereka lakukan untuk mengatasi hal tersebut.
  5. How Intelligent Marketers Use AI
    Saat ini AI telah menjadi aspek penting dalam dunia marketing, dan telah digunakan dalam berbagai proses bisnis dan industri. Akan tetapi mungkin masih banyak pakar marketing yang merasa kewalahan menghadapi topik AI ini, diantaranya karena kurangnya keahlian teknis untuk memahami bagaimana sebenarnya cara kerja AI. Meski demikian, bagi marketer yang cerdas, tidak perlu menjadi spesialis IT untuk bisa mempelajari cara pemanfaatan AI. Artikel berikut ini menyajikan ulasan mengenai bagaimana para marketer menggunakan AI untuk meningkatkan kinerja mereka, dan bagaimana Anda dapat melakukannya juga.

Tutorial dan pengetahuan teknis

  1. Scaling LinkedIn’s Hadoop YARN cluster beyond 10,000 nodes
    LinkedIn menggunakan Hadoop sebagai tulang punggung Big Data analitik dan pembelajaran mesin. Dengan volume data yang tumbuh secara eksponensial, mereka menggandakan ukuran klaster dari tahun ke tahun untuk menyesuaikan dengan tumbuhnya beban komputasi. Cluster terbesar mereka saat ini memiliki ~10.000 node, salah satu cluster Hadoop terbesar di dunia. Penskalaan arsitektur Hadoop YARN menjadi salah satu tantangan terbesar selama bertahun-tahun.
    Dalam posting ini akan dibahas perlambatan klaster YARN yang terjadi ketika mereka mendekati jumlah 10.000 node, dan solusinya. Kemudian dibahasa mengenai bagaimana mereka secara proaktif memantau penurunan kinerja di masa mendatang, termasuk tools open-source mereka, DynoYARN, untuk memperkirakan kinerja klaster YARN dengan ukuran arbitrer. Terakhir, dijelaskan mengenai Robin, service internal yang memungkinkan untuk menskalakan klaster secara horizontal hingga melebihi 10.000 node.
  2. Mengenal Feature Selection dalam Machine Learning
    Feature selection merupakan salah satu cara untuk meningkatkan akurasi pada sebuah model machine learning. Melalui artikel singkat ini diharapkan kita dapat mengenal feature selection beserta teknik-tekniknya.
  3. Modeling Pipeline Optimization With scikit-learn
    Tutorial ini menyajikan dua konsep penting dalam data science dan machine learning, yaitu alur pembelajaran mesin dan optimalisasinya. Kedua prinsip ini merupakan kunci dalam machine learning. Tutorial ini akan membahas mengenai bagaimana cara membangun pipeline menggunakan sklearn.pipeline, melakukan grid search untuk mendapatkan parameter terbaik menggunakan GridSearchCV() dari sklearn.model_selection, dan melakukan analisis hasil dari GridSearchCV(), serta memvisualisasikannya. Dalam tutorial ini digunakan Ecoli Dataset dari UCI Machine Learning Repository.
  4. Getting started with Kafka and Rust: Part 2
    Tutorial ini merupakan bagian kedua dari 2 artikel mengenai bagaimana menggunakan Rust dengan Kafka. Dalam artikel ini dijelaskan Kafka Consumer API, sedangkan crate atau library yang digunakan adalah rust-rdkafka.
  5. [FREE Ebook] R For Data Science – Hadley Wickham & Garret Grolemund.
    Ditulis oleh Chief Data Science RStudio, yang juga penulis berbagai package penting R, di antaranya ggplot2, tidyverse, dll.
    Buku ini menjelaskan dengan sangat baik tentang bagaimana mengolah data dan menghasilkan insight dalam R.
    Dengan penyajian yang detail dan terstruktur, buku ini juga sesuai untuk pembaca yang baru mulai terjun ke data sains maupun baru mempelajari R.

Rilis Produk

  1. Apache Karaf runtime 4.3.3
    Karaf menyediakan runtime modulith untuk enterprise, berjalan secara on-premis atau di atas cloud. Karaf memungkinkan user untuk lebih berfokus pada bisnis dan aplikasi. Rilis ini merupakan rilis penting pada seri Karaf 4.3.x, yang mencakup pembaruan, perbaikan, dan fitur baru, di ataranya kerangka repositori spesifikasi fitur, perbaikan kebocoran memori pada layanan status blueprint, perbaikan JMX exception push back ke klien, dan lain sebagainya.
  2. Apache jclouds 2.4.0 released
    Apache jclouds adalah toolkit multi-cloud open source untuk platform Java yang memberi Anda kebebasan untuk membuat aplikasi yang portabel di berbagai cloud, dan memberi Anda kontrol penuh untuk menggunakan fitur khusus cloud.
    Versi 2.4.0 ini adalah rilis reguler yang mencakup pembaruan, peningkatan, dan perbaikan bug, di antaranya peningkatan kompatibilitas dengan Java 9 dan environment yang baru.
  3. Apache IoTDB 0.12.2
    Apache IoTDB (Database untuk Internet of Things) adalah database native IoT
    dengan performa tinggi untuk manajemen dan analisis data, yang dapat diterapkan di edge dan cloud.
    Rilis ini adalah versi bug fixing dari 0.12.1, yang mencakup sejumlah pembaruan, peningkatan, dan perbaikan.
  4. Open-sourcing Mariana Trench: Analyzing Android and Java app security in depth
    Mariana Trench (MT) adalah tools yang digunakan oleh Facebook untuk menemukan dan mencegah bug secirity dan privasi di aplikasi Android dan Java. Sebagai bagian dari upaya untuk meningkatkan keamanan melalui otomatisasi, baru-baru ini Facebook membuka MT untuk mendukung tugas security engineer.
    Artikel ini adalah posting ketiga dari rangkaian pembahasan mengenai tools analisis statis dan dinamis yang digunakan oleh Facebook. MT sendiri adalah sistem terbaru, setelah Zoncolan dan Pysa, yang masing-masing dibuat untuk Hack dan Python.

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
  • Feb 18 / 2021
  • 0
AI, Apache, Artificial Intelligece, Big Data, Hadoop, Komunitas, machine learning, Spark

Big Data – Definisi, Teknologi dan Implementasinya

Big Data adalah sebuah istilah umum yang mengacu pada teknologi dan teknik untuk memproses dan menganalisa sekumpulan data yang memiliki jumlah yang sangat besar, baik yang terstruktur, semi terstruktur dan tidak terstruktur. Ada banyak tantangan yang akan dihadapi ketika berhubungan dengan big data, mulai dari bagaimana data diambil, disimpan, hingga masalah keamanan data.

Walaupun Istilah big data sudah sering didengar dan diucapkan, masih banyak diantara kita yang bertanya-tanya: Apa yang dimaksud dengan big data? Apa kegunaan big data? Apa saja teknologi big data? Mengapa big data diperlukan dalam berbagai bidang?

Apa Yang Dimaksud Dengan Big Data?

Tidak ada definisi yang baku mengenai big data. Secara garis besar big data adalah sekumpulan data yang memiliki jumlah yang sangat besar atau struktur yang kompleks sehingga teknologi pemrosesan data tradisional tidak lagi dapat menanganinya dengan baik. Saat ini istilah big data juga sering digunakan untuk menyebut bidang ilmu atau teknologi yang berkaitan dengan pengolahan dan pemanfaatan data tersebut.

Aspek yang paling penting dari big data sebenarnya bukan sekedar pada berapa besarnya data yang bisa disimpan dan diolah, akan tetapi kegunaan atau nilai tambah apa yang dapat diperoleh dari data tersebut. Jika kita tidak dapat mengekstrak nilai tambah tersebut, maka data hanya akan menjadi sampah yang tidak berguna. Nilai tambah ini dapat digunakan untuk berbagai hal, seperti meningkatkan kelancaran operasional, ketepatan penjualan, peningkatan kualitas layanan, prediksi atau proyeksi pasar, dan lain sebagainya.

Dalam bidang informatika dikenal sebuah istilah “Garbage in Garbage out” atau masukan sampah akan menghasilkan keluaran sampah juga. Maksudnya adalah jika masukan yang kita berikan ke sistem adalah input berkualitas rendah, maka kualitas outputnya tentu akan rendah juga. Input yang dimaksud di sini adalah data.

Untuk itu, memastikan kualitas input maupun output dalam setiap tahap pengolahan data untuk mendapatkan keluaran akhir yang berkualitas adalah sebuah keharusan dalam implementasi big data.

Karakteristik Big Data

Karakteristik Big Data biasa disebut dengan singkatan 4V, yaitu:

  • Volume : mengacu pada ukuran data yang perlu diproses. Saat ini satuan volume data di dunia telah melampaui zettabyte (1021 byte), bahkan telah banyak perusahaan atau organisasi yang perlu mengolah data sampai ukuran petabytes perharinya. Volume data yang besar ini akan membutuhkan teknologi pemrosesan yang berbeda dari penyimpanan tradisional.
  • Velocity : adalah kecepatan data yang dihasilkan. Data yang dihasilkan dengan kecepatan tinggi membutuhkan teknik pemrosesan yang berbeda dari data transaksi biasa. Contoh data yang dihasilkan dengan kecepatan tinggi adalah pesan Twitter dan data dari mesin ataupun sensor.
  • Variety : Big Data berasal dari berbagai sumber, dan jenisnya termasuk salah satu dari tiga kategori berikut: data terstruktur, semi terstruktur, dan tidak terstruktur. Tipe data yang bervariasi ini membutuhkan kemampuan pemrosesan dan algoritma khusus. Contoh data dengan variasi tinggi adalah pemrosesan data sosial media yang terdiri dari teks, gambar, suara, maupun video.
  • Veracity : mengacu pada akurasi atau konsistensi data. Data dengan akurasi tinggi akan memberikan hasil analisis yang berkualitas. Sebaliknya, data dengan akurasi rendah mengandung banyak bias, noise dan abnormalitas. Data ini jika tidak diolah dengan benar akan menghasilkan keluaran yang kurang bermanfaat, bahkan dapat memberikan gambaran atau kesimpulan yang keliru. Veracity merupakan tantangan yang cukup berat dalam pengolahan Big Data.

Di samping 4V tersebut, ada juga yang menambahkan satu lagi sehingga menjadi 5V, yaitu value. Value ini sering didefinisikan sebagai potensi nilai sosial atau ekonomi yang mungkin dihasilkan oleh data. Keempat karakteristik di atas (volume, velocity, variety dan veracity) perlu diolah dan dianalisis untuk dapat memberikan value atau manfaat bagi bisnis maupun kehidupan. Oleh karena itu, karakteristik yang kelima ini berkaitan erat dengan kemampuan kita mengolah data untuk menghasilkan output yang berkualitas.

Apa Saja Teknologi Big Data?

Perkembangan teknologi big data tidak bisa dilepaskan dari teknologi atau konsep open source. Istilah Big Data terus bergaung seiring dengan pesatnya perkembangan teknologi open source yang mendukungnya. Banyak perusahaan besar mengkontribusikan teknologi big data yang mereka buat dan mereka gunakan ke komunitas open source. Hal inilah yang kemudian menjadi salah satu pendorong utama berkembangnya big data.

Ada banyak sekali teknologi open source yang populer dalam ekosistem big data, berikut ini beberapa di antaranya:

  1. Apache Hadoop
    Apache Hadoop adalah sebuah framework yang memungkinkan untuk melakukan penyimpanan dan pemrosesan data yang besar secara terdistribusi dalam klaster komputer menggunakan model pemrograman sederhana. Hadoop terinspirasi dari teknologi yang dimiliki oleh Google seperti Google File System dan Google Map Reduce.
    Hadoop menawarkan 3 hal utama yaitu:

    • Sistem penyimpanan terdistribusi
      Hadoop memiliki sebuah file sistem yang dinamakan Hadoop Distributed File System atau lebih dikenal dengan HDFS. HDFS merupakan sistem penyimpanan file atau data terdistribusi dalam klaster Hadoop. HDFS terinspirasi dari Google File System.
    • Framework pemrosesan data secara paralel dan terdistribusi
      MapReduce adalah model pemrograman untuk melakukan pemrosesan data besar secara terdistribusi dalam klaster Hadoop. MapReduce bekerja dan mengolah data-data yang berada dalam HDFS.
    • Resource management terdistribusi
      YARN merupakan tools yang menangani resource manajemen dan penjadwalan proses dalam klaster Hadoop. YARN mulai diperkenalkan pada Hadoop 2.0. YARN memisahkan antara layer penyimpanan (HDFS) dan layer pemrosesan (MapReduce). Pada awalnya Hadoop hanya mensupport MapReduce sebagai satu-satunya framework komputasi paralel yang dapat bekerja diatas klaster Hadoop. YARN memungkinkan banyak framework komputasi paralel lain, seperti Spark, Tez, Storm, dsb, untuk bekerja diatas klaster Hadoop dan mengakses data-data dalam HDFS.

    Komponen-komponen Apache Hadoop
    Komponen-komponen Apache Hadoop

  2. Apache Hive
    Apache Hive adalah sebuah framework SQL yang berjalan di atas Hadoop. Hive mendukung bahasa pemrograman SQL yang memudahkan untuk melakukan query dan analisis data berukuran besar di atas Hadoop. Selain Hadoop, Hive juga dapat digunakan di atas sistem file terdistribusi lain seperti Amazon AWS3 dan Alluxio.
    Dukungan Hive terhadap SQL ini sangat membantu portabilitas aplikasi berbasis SQL ke Hadoop, terutama sebagian besar aplikasi data warehouse yang membutuhkan sistem penyimpanan maupun komputasi yang besar.Pada awalnya Hive dikembangkan oleh Facebook untuk digunakan sebagai sistem data warehouse mereka. Setelah disumbangkan ke komunitas open source, Hive berkembang dengan pesat dan banyak diadopsi serta dikembangkan oleh perusahaan besar lainnya seperti Netflix dan Amazon.

    Komponen Utama Apache Hive
    Komponen Utama Apache Hive

    Pada dasarnya Hive hanya sebuah layer untuk menerjemahkan perintah-perintah SQL ke dalam framework komputasi terdistribusi. Hive dapat bekerja menggunakan berbagai framework yang berjalan diatas Hadoop, seperti MapReduce, Tez ataupun Spark.

  3. Apache Spark
    Apache Spark merupakan framework komputasi terdistribusi yang dibangun untuk pemrosesan big data dengan kecepatan tinggi.Apache spark memiliki algoritma yang berbeda dengan MapReduce, tetapi dapat berjalan diatas Hadoop melalui YARN. Spark menyediakan API dalam Scala, Java, Python, dan SQL, serta dapat digunakan untuk menjalankan berbagai jenis proses secara efisien, termasuk proses ETL, data streaming, machine learning, komputasi graph, dan SQL.Selain HDFS, Spark juga dapat digunakan di atas file system lain seperti Cassandra, Amazon AWS3, dan penyimpanan awan yang lain.Fitur utama Spark adalah komputasi cluster dalam memori. Penggunaan memori ini dapat meningkatkan kecepatan pemrosesan aplikasi secara drastis. Untuk kasus tertentu, kecepatan pemrosesan Spark bahkan dapat mencapai 100 kali dibanding pemrosesan menggunakan disk seperti MapReduce.Jika MapReduce lebih sesuai digunakan untuk pemrosesan batch dengan dataset yang sangat besar, maka Spark sangat sesuai untuk pemrosesan iteratif dan live-streaming, sehingga Spark banyak dimanfaatkan untuk machine learning.Spark adalah salah satu sub project Hadoop yang dikembangkan pada tahun 2009 di AMPLab UC Berkeley. Sejak tahun 2009, lebih dari 1200 developer telah berkontribusi pada project Apache Spark.

Selain 3 teknologi tersebut, sebenarnya masih sangat banyak teknologi dan framework big data lainnya yang bersifat open source seperti HBase, Cassandra, Presto, Storm, Flink, NiFi, Sqoop, Flume, Kafka dan lain sebagainya.

Big Data Pipeline

Untuk dapat memberikan nilai yang bermanfaat, data harus melalui berbagai tahapan pemrosesan terlebih dahulu. Mulai dari pencatatan/pembuatan, pengumpulan, penyimpanan, pengayaan, analisis dan pemrosesan lebih lanjut, hingga penyajian. Rangkaian proses data ini biasa disebut dengan Data Pipeline.

Secara garis besar Big Data Pipeline dapat dibagi menjadi 3, yaitu :

    • Data Engineering: tercakup di dalamnya data collection, ingestion, cleansing, transformation dan enrichment.
    • Data Analytics / Machine Learning: mencakup feature engineering dan komputasi.
    • Data Delivery: penyajian data, termasuk penerapan model dalam aplikasi atau sistem, visualisasi, dan lain sebagainya.

Data Processing Pipeline
Data Processing Pipeline

Big Data Analytics

Saat ini jika kita berbicara mengenai big data, maka biasanya yang dimaksud adalah big data analytics. Hal ini cukup wajar, karena ketika sebuah proyek big data dimulai, tentu saja hasil akhir yang diharapkan adalah mendapatkan insight yang bermanfaat, yang dapat membantu pengambilan keputusan.

Data Analytics sendiri adalah serangkaian proses untuk menggali informasi atau insight dari kumpulan data. Informasi tersebut dapat berupa pola, korelasi, trend, dan lain sebagainya. Data analytics seringkali melibatkan teknik dan algoritma pengolahan data yang cukup kompleks seperti data mining maupun perhitungan statistik.

Dalam Big Data Analytics, tingkat kesulitannya semakin besar karena data yang diproses diperoleh dari berbagai sumber dengan bentuk dan jenis yang berbeda-beda, dan ukuran serta kecepatan yang besar pula. Oleh karena itu Big Data Analytics banyak menggunakan teknik dan algoritma yang lebih advance seperti predictive model dan machine learning untuk melihat trend, pola, korelasi dan insight lainnya.

Secara umum big data analytics terbagi 4 kategori yaitu:

    1. Descriptive Analytics
      Analisis ini digunakan untuk menjawab pertanyaan mengenai apa yang sedang terjadi. Hampir semua organisasi telah mengimplementasikan analisis jenis ini.
    2. Diagnostic Analytics
      Setelah mengetahui apa yang terjadi, biasanya pertanyaan berikutnya adalah mengapa bisa terjadi. Analisa jenis ini menggunakan drill-down data untuk mencari alasan lebih mendalam mengenai apa yang sedang terjadi.
    3. Predictive Analytics
      Analisis prediktif memberikan prediksi mengenai apa yang akan terjadi berdasarkan data-data yang ada. Analisa jenis ini menggunakan teknik dan algoritma machine learning dan artificial intelligence untuk menghasilkan model prediksi berdasarkan data-data historis.
    4. Prescriptive Analytics
      Memanfaatkan analisis deskriptif dan prediktif, analisis jenis ini memberikan insight untuk dapat memperoleh hasil yang sesuai dengan apa yang telah diprediksikan.

Implementasi Big Data dalam Bisnis
Jenis dan Tingkatan Data Analytics

Implementasi Big Data dalam Bisnis

Kebiasaan manusia dan persaingan bisnis di era yang semakin terbuka saat ini menjadikan pengambilan keputusan yang tepat adalah kunci untuk bertahan dalam bisnis. Data adalah salah satu penentu keberhasilan dalam pengambilan keputusan.

Customer Profiling
Pola dan profil pelanggan dapat dipelajari melalui data-data yang dibuat oleh pelanggan ketika sedang berinteraksi dengan produk, baik secara langsung, melalui website ataupun menggunakan aplikasi. Saat ini data profil pelanggan dapat diperluas lagi dengan menyertakan informasi geolokasi, bahkan data-data sosial media yang mereka buat.

Semakin banyak data yang dikumpulkan, serta makin canggihnya proses pengolahan data tersebut, maka informasi yang akurat dan detail mengenai profil pelanggan dapat diperoleh. Produsen atau penyedia layanan dapat memberikan rekomendasi yang tepat kepada pelanggan sehingga dapat meningkatkan penjualan maupun loyalitas pelanggan.

Product Development
Membangun produk dari sebuah ide yang pada akhirnya dapat diterima dengan baik oleh pasar merupakan sebuah tantangan. Big data dapat memberikan insight yang mendalam
untuk mengidentifikasikan kebutuhan pasar, melihat respon pelanggan melalui komentar pada forum atau sosial media, mengevaluasi kinerja penjualan produk di pasar dengan cepat, mengoptimalkan rantai distribusi, hingga mengoptimalkan strategi pemasaran.

Semakin baik pengelolaan data dan semakin cepat ketersediaan dapat akan dapat terus untuk membuat produk yang berkesinambungan sehingga memberikan nilai yang baik di bagi pelanggan dan pengguna.

Price Optimization
Harga bisa menjadi kunci bagi pelanggan untuk menentukan produk yang akan dibeli. Akan tetapi perang harga pun dapat memberikan pengaruh buruk bagi produk itu sendiri. Big data dapat memberikan peta dan pola harga yang ada di pasar, sehingga produsen dapat menentukan harga yang optimal dan promosi harga yang sesuai dengan kebutuhan pasar.

Big Data untuk Telekomunikasi

Telekomunikasi merupakan salah satu sektor yang mau tidak mau harus berurusan dengan big data. Terlebih lagi saat ini layanan telekomunikasi bisa dibilang adalah jantung dari dunia digital kita. Jika data sering disebut sebagai ‘the new oil’, maka penyedia layanan telekomunikasi seperti memiliki sebuah tambang minyak yang sangat produktif.
Ada banyak sekali sumber data yang ada dalam sebuah perusahaan telekomunikasi. Sebut saja data operasional jaringan, data transaksi percakapan, data koneksi internet, data pelanggan, dan data produk. Jika semua data-data tersebut dapat diintegrasikan dengan baik, maka akan dapat memberikan insight yang dapat digunakan untuk optimalisasi jaringan, meningkatkan pelayanan, pembuatan produk dan program promosi, serta meningkatkan loyalitas pelanggan.

Big Data untuk Kesehatan

Data dalam bidang kesehatan adalah salah satu contoh big data karena volume, kompleksitas, keragaman serta tuntutan ketepatan waktunya. Disamping itu layanan kesehatan juga melibatkan banyak sekali pihak, diantaranya yaitu berbagai rumah sakit, lab, klinik, dan asuransi kesehatan. Oleh karena itu bidang kesehatan termasuk sektor yang memiliki tantangan besar di bidang big data.

Integrasi data, akurasi data dan kecepatan perolehan data merupakan hal yang sangat penting dalam bidang kesehatan, karena hal ini menyangkut keselamatan pasien. Tidak hanya itu, jumlah tenaga medis dan rumah sakit pun masih sangat kurang dibanding dengan potensi pasien, terlebih di masa pandemi seperti saat ini. Insight yang diperoleh melalui big data dapat digunakan untuk membantu mengatasi permasalahan tersebut, diantaranya yaitu untuk penegakan diagnosa yang lebih akurat, personalisasi obat-obatan, peningkatan pelayanan rumah sakit hingga optimalisasi operasional rumah sakit.

Kecerdasan Buatan (Artificial Intelligence) dan Big Data

Setelah implementasi big data dalam arti pengelolaan dan analisa data dapat dilakukan dengan baik, tantangan berikutnya adalah bagaimana dengan data itu kita bisa melatih mesin untuk dapat belajar sehingga dapat bekerja dan memberikan insight secara otomatis, cepat, dan akurat. Maka Artificial Intelligence, Machine Learning dan Deep Learning muncul kembali dan menjadi trend baru di masa kini.

Lalu apa perbedaan AI, machine learning dan deep learning? Secara ruang lingkup, deep learning merupakan bagian dari machine learning, dan machine learning merupakan bagian dari artificial intelligence. Inti ketiganya adalah bagaimana membuat mesin atau komputer menjadi cerdas. Tujuan utamanya yaitu untuk mengurangi campur tangan manusia dalam memberikan insight ataupun dalam melakukan berbagai pekerjaan manusia.

Hubungan AI, Machine Learning, dan Deep Learning
Hubungan AI, Machine Learning, dan Deep Learning

Artificial intelligence sendiri bukan merupakan hal baru, akan tetapi bidang ini mulai berkembang dengan sangat pesat dan menjadi sebuah trend setelah munculnya big data. Hal ini dikarenakan ketersediaan data yang melimpah, yang telah dapat ‘ditaklukkan’ dengan big data, yang merupakan materi utama bagi mesin untuk belajar dan menjadi cerdas.

Tidak hanya data, teknologi juga memegang peranan penting bagi perkembangan artificial intelligence. Berbagai perangkat dan teknologi dengan performa yang sangat tinggi saat ini sudah tersedia secara relatif murah dan terjangkau. Jika semula artificial intelligence dianggap sebagai sesuatu yang canggih dan hanya bisa diterapkan menggunakan teknologi yang tinggi dan mahal, saat ini artificial intelligence sudah dapat diimplementasikan pada berbagai perangkat dan sistem yang digunakan sehari-hari.

Komunitas Big Data Indonesia

idBigData adalah komunitas big data Indonesia yang dideklarasikan pada tanggal 2 Desember 2014. Pada saat itu big data masih menjadi sebuah hal yang relatif baru di Indonesia. Belum banyak orang yang paham mengenai apa itu big data, apa kegunaannya, dan bagaimana memanfaatkannya. Maka dibentuknya idBigData sebagai komunitas big data Indonesia bertujuan untuk menjadi wadah berkumpulnya komponen masyarakat dari berbagai bidang untuk saling bertukar pengetahuan dan pengalaman, serta menjalin berbagai kerja sama dalam bidang big data serta pemanfaatannya, termasuk di dalamnya data science dan artificial intelligence.

Contributor :


Tim idbigdata
Tim idbigdata
always connect to collaborate every innovation 🙂
  • Nov 28 / 2019
  • Comments Off on Seputar Big Data edisi #79
Seputar Big Data #79
AI, Apache, Artificial Intelligece, Big Data, Google, Hadoop, Komunitas, machine learning, Medical Analytics, Social Media

Seputar Big Data edisi #79

Seputar Big Data #79

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama pekan terakhir bulan November 2019

Artikel dan berita
  1. How to Become a Data Scientist (Skills + Qualifications)
    Kebutuhan akan data scientist saat ini sedang meningkat. Karir sebagai data scientist merupakan karir yang banyak dicita-citakan dan menawarkan gaji yang menggiurkan.
  2. An Intro to AI for people that hate math and can’t code
    Berikut adalah kursus singkat AI untuk manajer, pemilik bisnis, dan peran non-teknis lainnya yang ingin memahami Kecerdasan Buatan untuk mulai menggunakannya dalam institusi.
  3. McKinsey survey: AI boosts revenue, but companies struggle to scale use
    Survei Global McKinsey terbaru yang dirilis pekan lalu menemukan bahwa kecerdasan buatan memiliki dampak positif pada hasil bisnis, dengan 63% responden melaporkan peningkatan pendapatan setelah adopsi teknologi. Namun, hanya 30% perusahaan yang menerapkan AI ke beberapa unit bisnis, atau naik dari 21% tahun lalu.
  4. Introducing the Next Generation of On-Device Vision Models: MobileNetV3 and MobileNetEdgeTPU
    Google mengumumkan rilis source code dan checkpoint untuk model MobileNetV3 dan MobileNetEdgeTPU. Model-model tersebut adalah hasil perkembangan terbaru dalam teknik AutoML yang mengenali perangkat keras serta perkembangan dalam desain arsitektur. Pada CPU seluler, MobileNetV3 dua kali lebih cepat dari MobileNetV2 dengan akurasi yang setara, dan semakin maju untuk jaringan computer vision mobile.
  5. Powered by AI: Instagram’s Explore recommender system
    Menurut Facebook, lebih dari setengah pengguna Instagram yang mencapai 1 miliar mengunjungi Instagram Explore untuk menemukan video, foto, streaming langsung, dan Story setiap bulannya. Oleh karena itu, membangun mesin rekomendasi menjadi tantangan teknis, salah satunya karena tuntutan fungsi real time. Dalam posting blog ini Facebook mengupas cara kerja Instagram Explore, yang menggunakan bahasa kueri dan teknik pemodelan kustom. Sistem ini mengekstrak setidaknya 65 miliar fitur dan membuat 90 juta prediksi model setiap detiknya.
Tutorial dan Pengetahuan Teknis
  1. Scaling Apache Airflow for Machine Learning Workflows
    Apache Airflow adalah platform yang cukup populer untuk membuat, menjadwalkan, dan memantau workflow dengan Python, tetapi ia dibuat untuk keperluan proses ETL. Dengan menggunakan Valohai, kita dapat menggunakan Apache Airflow untuk membantu proses machine learning.
  2. Google’s BERT changing the NLP Landscape
    Salah satu perkembangan drastis dalam Pemrosesan Bahasa Alami (NLP) adalah peluncuran Representasi Encoder Bidirectional Google dari Transformers, atau model BERT - model yang disebut model NLP terbaik yang pernah didasarkan pada kinerja superiornya atas berbagai macam tugas.
  3. Exploring Apache NiFi 1.10: Parameters and Stateless Engine
    Pada artikel ini, dibahas versi terbaru Apache NiFi dan bagaimana menggunakan dua fitur baru terbesar: parameter dan stateless.
  4. Unsupervised Sentiment Analysis
    Salah satu implementasi dari metode NLP adalah analisa sentimen, di mana Anda mencoba mengekstrak informasi mengenai emosi penulis. Artikel berikut menjelaskan cara melakukan analisa sentimen menggunakan data tanpa label.
  5. Text Encoding: A Review
    Kunci untuk melakukan operasi teks mining adalah mengubah teks menjadi vektor numerik, atau biasa disebut text encoding. Setelah teks ditransformasi menjadi angka, kita dapat memanfaatkan berbagai algoritma pembelajaran mesin untuk klasifikasi dan klastering. Artikel ini membahas beberapa teknik encoding yang banyak digunakan dalam teks mining.
Rilis Produk
  1. Apache BookKeeper 4.10.0 released
    The 4.10.0 release incorporates hundreds of bug fixes, improvements, and features since previous major release, 4.9.0. Apache BookKeeper/DistributedLog users are encouraged to upgrade to 4.10.0.
    Rilis 4.10.0 adalah rilis major, yang mencakup ratusan perbaikan bug, peningkatan, dan fitur sejak rilis 4.9.0. Pengguna Apache BookKeeper/DistributedLog disarankan untuk melakukan upgrade ke 4.10.0.
  2. Apache Libcloud 2.6.1 release
    Libcloud adalah library Python yang mengabstraksi perbedaan berbagai API penyedia cloud. Library ini memungkinkan pengguna untuk mengelola layanan cloud (server, penyimpanan, load balancer, DNS, containers as a service) yang ditawarkan oleh banyak penyedia berbeda melalui API tunggal, terpadu, dan mudah digunakan.
    Libcloud v2.6.1 mencakup berbagai perbaikan bug dan peningkatan.
  3. Apache Kudu 1.11.1 Released
    Apache Kudu 1.11.1 adalah rilis perbaikan bugs.


Contributor :

Tim idbigdata always connect to collaborate every innovation 🙂
  • Oct 24 / 2019
  • Comments Off on Seputar Big Data edisi #77
Apache, Artificial Intelligece, Big Data, Blockchain, machine learning

Seputar Big Data edisi #77

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu IV bulan Oktober 2019.

Artikel dan berita

  1. Google confirms ‘quantum supremacy’ breakthrough
    Google mengumumkan secara resmi bahwa mereka berhasil mencapai supremasi kuantum. Google menyatakan bahwa prosesor Sycamore 54-qubit-nya mampu melakukan dalam 200 detik perhitungan yang jika dilakukan oleh superkomputer paling kuat di dunia akan memerlukan waktu 10.000 tahun. Namun klaim ini dibantah oleh IBM dalam blog post mereka Senin lalu.
  2. Microsoft’s AI rewrites sentences based on context
    Salah satu permasalahan pelik bagi mesin dalam percakapan adalah mendeteksi konteks. Padahal konteks pembicaraan adalah bagian yang sangat krusial. Para periset dari Microsoft baru-baru ini melakukan penelitian mengenai penyesuaian ujaran terakhir dari serangkaian percakapan dengan menggunakan konteks yang terakhir dipakai. Penelitian ini diklaim mencapai hasil yang memuaskan dari segi kualitas pengubahan maupun dari segi kualitas respon yang dihasilkan dalam percakapan.
  3. Blockchain’s Shocking Impact on the Restaurant Supply Industry
    Blockchain telah mengubah banyak sektor bisnis, termasuk beberapa sektor yang mungkin tidak diperhitungkan akan terpengaruh. Salah satunya adalah industri supply chain untuk restoran.
  4. Growing Depth Of Background Checks In The Big Data Age
    Pemeriksaan rekam jejak di era big data berkembang menjadi lebih mendalam dan lebih kompleks. Artikel ini mengupas mengenai dampak big data terhadap pemeriksaan latar belakang atau riwayat hidup.

Tutorial dan pengetahuan teknis

  1. How YouTube is Recommending Your Next Video
    Bagaimana YouTube menentukan rekomendasi video selanjutnya untuk anda? Artikel ini mengupas mengenai paper dan algoritma rekomendasi yang digunakan Youtube.
  2. Taking DuckDB for a spin
    DuckDB adalah database kolumnar embedded yang dioptimasi untuk analitics. Posting ini membahas mengenai cara menggunakannya melalui binding Python, dan membandingkan kinerja dengan SQLite pada beberapa query.
  3. Understanding Blockchain Technology by building one in R
    Semua orang berbicara mengenai Blockchain, namun sayangnya tidak banyak yang tahu mengenai teknologi yang mendasarinya. Artikel ini menjelaskan mekanisme kerja blockchain dengan memberikan contoh implementasi sederhana dalam R.
  4. Creating an Open Standard: Machine Learning Governance using Apache Atlas
    Machine learning adalah salah satu kemampuan paling penting bagi bisnis modern untuk tumbuh dan tetap kompetitif saat ini. Tetapi ini menciptakan tantangan tata kelola baru dan unik yang saat ini sulit dikelola. Artikel ini memaparkan mengenai apa dan bagaimana Machine Learning governance dan penerapannya menggunakan Apache Atlas.
  5. Learnings from the journey to continuous deployment
    Pengalaman linkedin dalam melakukan continuous development. Bagaimana mereka memanage ribuan microservice, melakukan frequent rilis dan commit secara seamless dengan tetap mempertahankan kualitas layanan
  6. A Kafka Tutorial for Everyone, no Matter Your Stage in Development
    Kumpulan artikel mengenai tutorial Kafka yang cukup komprehensif, mulai dari dasar pengenalan, setup, development dalam berbagai tahap, sampai testing dan koneksi ke framework lain.

Rilis Produk

  1. Introducing Glow: an open-source toolkit for large-scale genomic analysis
    Glow adalah toolkit open-source yang dibangun di atas Apache Spark™ yang memudahkan dan mempercepat penggabungan data genomic dan fenotip untuk data preparation, analisis statistik, dan pembelajaran mesin pada skala biobank.
  2. Introducing Apache Arrow Flight: A Framework for Fast Data Transport
    Arrow Flight adalah protokol untuk mengirim data dengan cepat dan efisien dalam format Arrow, yang dibangun di atas gRPC. Meskipun masih dalam pengembangan awal, namun Arrow Flight diharapkan akan berperan penting dalam meningkatkan efisiensi pemrosesan data berskala besar.
  3. Open Sourcing Mantis: A Platform For Building Cost-Effective, Realtime, Operations-Focused Applications
    Netflix membuka kode Mantis, platform yang mereka gunakan untuk development. Mantis adalah platform layanan microservice streaming yang memungkinkan para developer untuk meminimalkan cost monitoring dan pengoperasian sistem terdistribusi yang kompleks.
  4. Apache Kylin 2.6.4 released
    Kylin 2.6.4 adalah rilis perbaikan bugs dengan 27 perbaikan di dalamnya. Apache Kylin adalah Distributed Analytics Engine yang menyediakan antarmuka SQL dan analisis multidimensi (OLAP) di atas Apache Hadoop.
  5. Apache Arrow 0.15.0 released
    Versi 1.15.0 ini mencakup 711 penyelesaian isu dari rilis sebelumnya. Apache Arrow adalah platform pengembangan lintas bahasa untuk data dalam memori. Bahasa yang didukung saat ini termasuk C, C ++, C #, Go, Java, JavaScript, MATLAB, Python, R, Ruby, dan Rust.
  6. Beam 2.16.0 Released!
    Apache Beam adalah model pemrograman terpadu untuk mendefinisikan dan menjalankan pipeline pemrosesan data, termasuk ETL, batch, dan stream. Rilis ini mencakup perbaikan bugs, peningkatan serta penambahan fitur dan kinerja.
  7. Apache HBase 2.1.7 is now available for download
    Rilis ini mencakup sekitar 61 perbaikan bugs maupun peningkatan kinerja, termasuk upgrade jackson dan perbaikan terhadap beberapa bug yang kritikal.
  8. Apache Tuweni (incubating) 0.9.0 released
    Apache Tuweni adalah seperangkat library dan tools untuk membantu pengembangan blockchain dan perangkat lunak terdesentralisasi lainnya dalam Java dan bahasa JVM lainnya. Mencakup lybrary byte tingkat rendah, serialisasi dan codec deserialisasi (mis. RLP), berbagai fungsi kriptografi dan primitif, dan lain-lain. Saat ini Apache Tuweni mencapai versi 0.9.0 (incubating).

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
  • Sep 19 / 2019
  • Comments Off on Seputar Big Data edisi #74
Apache, Artificial Intelligece, Big Data, IoT, Social Media

Seputar Big Data edisi #74

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data dan AI yang dikutip dari berbagai site. Berikut ini beberapa hal dan topik menarik yang layak untuk dibaca kembali hingga pertengahan bulan September 2019

Artikel dan berita

  1. Jutaan Data Penumpang Lion Air Dilaporkan Bocor di Forum Internet
    Puluhan juta data penumpang dua maskapai penerbangan milik Lion Air kabarnya beredar di forum pertukaran data sejak sebulan lalu. Data-data itu diakses dalam penyimpanan cloud Amazon Web Services (AWS) yang dibuka lewat web.
  2. Database leaks data on most of Ecuador’s citizens, including 6.7 million children
    Kebocoran data besar-besaran mengekspos data pribadi lengkap dari hampir setiap individu di Ekuador. Insiden ini berdampak pada sekitar 20 juta orang (sebagai referensi, Ekuador memiliki populasi sekitar 17 juta). Data yang terekspos termasuk 6,7 juta anak di bawah umur dan data presiden Ekuador sendiri.
  3. What’s next for big data after a turbulent 2019?
    Selama awal hingga pertengahan tahun 2019 dipenuhi dengan guncangan yang cukup dahsyat dalam bidang big data dan analisa data. Ditandai dengan gelombang akuisisi yang tampaknya tidak ada habisnya. Diiringi dengan naik turunnya saham vendor Big Data dunia.
  4. Digital transformation in aviation: Big data, IoT, AI & mobility
    Sejak revolusi digital yang dimulai hampir seperempat abad lalu, industri penerbangan selalu berada di garis depan transformasi digital. Saat ini semakin banyak perusahaan yang sangat menyadari kunci dari pemanfaatan penuh potensi pasar penerbangan adalah dengan menawarkan solusi terobosan bentuk baru dengan memanfaatkan teknologi digital.
  5. Can AI Save Our Oceans? Let’s Start With The Data.
    Dekade terakhir ini lautan berada dalam krisis yang sangat mengkhawatirkan dan dapat membahayakan seluruh umat manusia. Masalah serius yang dihadapi mulai dari perubahan iklim, pencemaran plastik hingga penangkapan ikan berlebihan.

Tutorial dan pengetahuan teknis

  1. The 5 Classification Evaluation metrics every Data Scientist must know
    Jika telah selesai membuat model klasifikasi, hal berikutnya adalah mengevaluasi model tersebut untuk meningkatkan akurasinya. Tapi apakah kita hanya menggunakan akurasi sebagai metrik kinerja model kita?
  2. A Quick Introduction To Deep Learning
    Selama beberapa tahun terakhir, deep learning telah meninggalkan laboratorium penelitian untuk menaklukkan dunia nyata. Hasil spektakuler telah dibuat oleh Google, Amazon, Facebook atau pun Microsoft, melalui penggunaan algoritma deep learning telah mendapat eksposur yang luar biasa dari media.
  3. BERT, RoBERTa, DistilBERT, XLNet: Which one to use?
    Hadirnya Google BERT telah menghebohkan dunia NLP. BERT mampu mengungguli metode NLP lainnya. Artikel ini akan membandingkan antara berbagai metode BERT dan turunannya, sehingga kita dapat memilih mana yang paling sesuai untuk kebutuhan.
  4. Social Network Visualization with R
    Analisis dan visualisasi data jejaring sosial menggunakan R, langkah demi langkah lengkap dengan source code.
  5. Doing Multivariate Time Series Forecasting with Recurrent Neural Networks
    Perkiraan Time Series adalah area penting dalam Pembelajaran Mesin. Dengan perkembangan terkini dalam jaringan syaraf tiruan, kita dapat mengatasi berbagai masalah yang sulit dilakukan dengan pendekatan prediksi deret waktu klasik. Artikel ini menjelaskan bagaimana cara menggunakan Keras ‘Long-Short Term Memory (LSTM) untuk Time Series Forecasting dan MLFLow untuk menjalankan model pelacakan.
  6. Using Jakarta EE/MicroProfile to Connect to Apache Kafka: Part Two
    Ekstensi CDI adalah mekanisme di mana kita dapat mengimplementasikan fungsionalitas tambahan di atas CDI container. Ekstensi ini memungkinkan Jakarta EE / MicroProfile untuk terus mengembangkan ekosistem mereka dengan lebih banyak kerangka kerja dan integrasi. Posting ini akan membahas tentang opsi lain untuk mengintegrasikan Jakarta EE / MicroProfile dengan Apache Kafka. Posting pertama dalam seri ini dapat ditemukan di sini : https://dzone.com/articles/using-jakarta-eemicroprofile-to-connect-to-apache.

Rilis Produk

  1. Apache Calcite 1.21.0 released
    Rilis ini mencakup lebih dari 100 penyelesaian issue, termasuk di dalamnya banyak fitur baru, peningkatan secara umum, maupun perbaikan bugs. Calcite adalah framework manajemen data dinamis, yang mendukung berbagai bahasa dan data engine, serta menyediakan SQL parser.
  2. Announcing the General Availability of Cloudera Streams Management
    Cloudera memperkenalkan bundel manajemen dan monitoring untuk Kafka : Cloudera Streams Management (CSM).
  3. Announcing Two New Natural Language Dialog Datasets
    Google merilis 2 dataset baru yang berisi percakapan dalam bahasa Inggris, yang dapat digunakan untuk melatih asisten digital.

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
  • Aug 01 / 2019
  • Comments Off on Seputar Big Data edisi #73
Apache, Artificial Intelligece, Big Data, machine learning, Social Media

Seputar Big Data edisi #73

Setelah lama tidak hadir, kali ini seputar informasi mengenai big data hadir kembali. Informasi yang diambil dari berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site.

Artikel dan berita

  1. Deep learning is about to get easier — and more widespread
    Permasalahan utama dari AI, khususnya deep learning adalah kebutuhan akan data yang sangat besar untuk melatih mesin agar dapat menemukan pola dan hubungan dalam data. Tidak semua perusahaan atau institusi dapat menyediakan data tersebut, oleh karena itu para peneliti terus berusaha mengembangkan metode untuk mengatasi hal ini, agar deep learning dapat lebih mudah dijangkau oleh semua kalangan. Artikel ini menyajikan 3 di antaranya.
  2. Facebook AI’s RoBERTa improves Google’s BERT pretraining methods
    Peneliti Facebook AI dan University of Washington menemukan cara untuk meningkatkan performa BERT yang merupakan model NLP yang dipublikasikan oleh Google. Model baru ini diuji menggunakan dataset untuk benchmark seperti GLUE, SQuAD, dan RACE. Diberi nama RoBERTa singkatan dari “Robustly Optimized BERT approach”, model ini mengadopsi banyak teknik yang digunakan oleh Bidirectional Encoder Representations from Transformers (BERT) miliki Google.
  3. Big Data Is Already A Thing Of The Past: Welcome To Big Data AI
    Sebelumnya, Big Data adalah salah satu frasa yang paling banyak dibicarakan tentang tren teknologi. Saat ini istilah kecerdasan buatan (AI) sudah sangat populer. Kedepannya kombinasi antara Big Data dan AI diprediksi akan menjadi trend baru, sebut saja Big Data AI.
  4. 4 Ways AI-Driven ETL Monitoring Can Help Avoid Glitches
    Proses ETL (Extract, Transform, Load) adalah salah satu proses terpenting dalam analitik big data dan juga merupakan proses terpanjang dan terberat. Jika proses awal ini gagal maka analisa tidak dapat dilakukan dengan baik. Bagaimana AI dan machine learning dapat mendeteksi kesalahan ETL sebelum berubah menjadi analisa yang tidak akurat?

Tutorial dan pengetahuan teknis

  1. Learn Classification with Decision Trees in R
    Salah satu algoritma klasifikasi yang paling mudah adalah decision tree. Dalam artikel ini akan dibahas penggunaan algoritma decision tree yang diimplementasikan menggunakan R.
  2. Real-Time Stream Processing With Apache Kafka Part 2: Kafka Stream API
    Artikel lanjutan dari artikel sebelumnya yang telah membahas apa itu Apache Kafka. Dalam artikel ini akan dibahas mengenai Kafka API khususnya Stream API.
  3. Illustrated: 10 CNN Architectures
    Artikel ini adalah bentuk visualisasi dari 10 arsitektur CNN populer, yang bisa kita gunakan. Digambarkan dengan sederhana dan ringkas sehingga mudah dilihat dan dipahami gambaran keseluruhannya.

Rilis Produk

  1. Announcing the MLflow 1.1 Release
    Minggu ke empat bulan Juli lalu, tim development dari databricks merilis MLflow 1.1. Dalam rilis ini, berfokus pada menyempurnakan komponen pelacakan MLflow dan meningkatkan komponen visualisasi di UI.
  2. Microsoft ML Server 9.4 now available
    Microsoft Machine Learning Server, platform untuk mengimplementasikan machine learning menggunakan R dan Python, telah diperbarui ke versi 9.4. Pembaruan ini mencakup mesin update R 3.5.2 dan Python 3.7.1, dan mendukung integrasi dengan Spark 2.4.
  3. Apache Arrow 0.14.1 released
    Rilis ini merupakan patch rilis yang mencakup penyelesaian 46 issue sejak rilis 1.14.0 pada 8 Juli 2019 lalu. Sebelumnya, rilis 1.14.0 mencakup penyelesaian 602 issue dari rilis 1.13.0. Apache Arrow adalah platform pengembangan lintas bahasa untuk in-memory data.
  4. Apache Kudu 1.10.0 Released
    Versi 1.10.0 adalah rilis minor yang mencakup beberapa fitur baru, peningkatan, optimasi, maupun perbaikan bugs. Kudu adalah mesin penyimpanan untuk data terstruktur yang dirancang dalam konteks ekosistem Apache Hadoop dan mendukung integrasi dengan proyek data analitik lain di dalam maupun di luar Apache.
  5. Apache Solr™ 8.2.0 available
    Rilis ini mencakup beberapa fitur baru, perbaikan, optimasi, dan bug fixing. Solr adalah platform pencarian NoSQL terpopuler dari proyek Apache Lucene.
  6. Apache Rya 4.0.0-incubating released
    Rya adalah triple store RDF berbasis cloud yang mendukung kueri SPARQL. Rya adalah sistem manajemen data RDF yang dikembangkan di atas Apache Accumulo®. Versi ini adalah rilis Apache yang ketiga dari Rya.

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
  • May 06 / 2019
  • Comments Off on Seputar Big Data edisi #71
Apache, Artificial Intelligece, Big Data, Implementation, machine learning, Spark

Seputar Big Data edisi #71

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu I bulan Mei 2019

Artikel dan berita

  1. Serbu! Kemenkominfo Buka 25 Ribu Beasiswa Big Data Cs Gratis
    Kementerian Komunikasi dan Informatika (Kemenkominfo) menggagas beasiswa pelatihan melalui Digital Talent Scholarship 2019 bagi 25 ribu peserta. Pelatihan itu meliputi bidang-bidang seperti artificial intelligence (AI), big data, cloud computing, cyber security, internet of things, dan machine learning.
  2. Facebook lets select researchers access ‘privacy-protected’ data
    Facebook memberikan akses khusus terhadap lebih dari 60 peneliti yang dipilih oleh 2 organisasi mitra, Social Science One dan Social Science Research Council (SSRC). Para peneliti tersebut dapat mengakses data yang dilindungi privasi tersebut untuk penelitian mengenai pengaruh media sosial terhadap demokrasi.
  3. Visualizing Disparities: How Mapping and Big Data Can Provide Insight into Social Equity Indicators
    Big data dan informasi geolokasi telah terbukti bermanfaat dalam persiapan dan penanganan bencana. Informasi tersebut juga dapat digunakan untuk mendapatkan insight terhadap komunitas, dan mengidentifikasi berbagai faktor yang mempengaruhi kualitas hidup masyarakat di wilayah tertentu, dengan cara seperti yang diuraikan dalam artikel ini.
  4. Harvard AI determines when tuberculosis becomes resistant to common drugs
    Tuberkulosis (TB) adalah salah satu penyakit paling mematikan di dunia. Pada tahun 2017 tercatat hampir 10 juta orang terinfeksi, dan 1,3 juta kematian terkait TB. Bakteri yang menyebabkan TB pun sulit untuk ditarget karena kemampuannya untuk mengembangkan resistensi terhadap obat tertentu. Para peneliti di Blavatnik Institute di Harvard Medical School telah merancang pendekatan komputasi yang mampu mendeteksi resistensi terhadap obat TB yang biasa digunakan, dengan kecepatan dan akurasi yang sangat baik.
  5. From drone swarms to modified E. Coli: say hello to a new wave of cyberattacks
    Para peneliti menciptakan malware berbasis AI yang dapat digunakan untuk menghasilkan gambar kanker palsu yang dapat menipu dokter yang paling ahli sekalipun. Dengan malware ini, pasien yang sehat bisa jadi akan mendapatkan kemoterapi dan radiasi, sedangkan pasien kanker justru akan dipulangkan begitu saja. Contoh ini menunjukkan bahwa serangan data adalah senjata nuklir abad ke-21. Lebih dari penguasa wilayah, siapapun yang menguasai data mampu memanipulasi perasaan dan pikiran masyarakat. Untuk itu pengambil kebijakan perlu memahami lebih baik resiko keamanan yang dapat muncul dari penggunaan AI.

Tutorial dan pengetahuan teknis

  1. Generative and Analytical Models for Data Analysis
    Artikel ini memberikan penjelasan yang sangat baik mengenai dua pendekatan data analisis yaitu generatif dan analitikal, perbedaan antara keduanya serta apa pentingnya. Dijelaskan juga mengenai apa bagian yang seringkali ‘hilang’ dalam proses data analisis, yang menghambat kesuksesan proses tersebut.
  2. How to Implement VGG, Inception and ResNet Modules for Convolutional Neural Networks from Scratch
    Terdapat beberapa model jaringan saraf convolutional yang telah terbukti berhasil dan berkinerja baik dalam menyelesaikan permasalahan seperti klasifikasi citra. Beberapa model di antaranya menggunakan komponen yang diulang berkali-kali seperti misalnya blok VGG dalam model VGG, modul inception dalam GooLeNet, dan model residual dalam ResNet. Artikel ini menjelaskan mengenai implementasi model-model tersebut dari 0.
  3. Detailed Guide to the Bar Chart in R with ggplot
    Pemilihan jenis grafik untuk menampilkan hasil analisis sangat menentukan kejelasan dan efektivitas penyajian informasi. Salah satu jenis grafik yang paling sederhana namun powerful adalah bar chart. Artikel ini menjelaskan penggunaan ggplot untuk membuat bar chart yang sesuai dengan kebutuhan kita.
  4. Why Your Spark Apps Are Slow Or Failing, Part II: Data Skew and Garbage Collection
    Bagian kedua dari serial artikel ini membahas mengenai permasalahan-permasalahan yang muncul dari data skew dan garbage collection dalam Spark.
  5. Optimizing Kafka Streams Applications
    Rilis Kafka 2.1.0 memperkenalkan framework optimisasi topologi prosesor pada layer Kafka Stream DSL. Artikel ini menjelaskan mengenai topologi prosesor pada Kafka versi sebelumnya, issue yang muncul yang terkait efisiensi, dan solusinya di versi 2.1.0. Dibahas pula mengenai bagaimana menyalakan optimisasi ini dalam proses upgrade Kafka.
  6. Normalization vs Standardization — Quantitative analysis
    Salah satu issue yang penting machine learning adalah feature scaling atau penskalaan fitur. Dua metode yang paling banyak dibahas adalah normalisasi dan standarisasi. Artikel ini menyajikan eksperimen untuk mencoba menjawab beberapa pertanyaan terkait pemilihan kedua metode tersebut dan dampaknya terhadap model yang dihasilkan.
  7. Improving Uber’s Mapping Accuracy with CatchME
    Transportasi andal membutuhkan peta yang akurat, yang menyediakan layanan seperti routing, navigasi, dan perhitungan perkiraan waktu kedatangan (ETA). Error pada peta dapat mengganggu layanan dan kepuasan pengguna. Uber berbagi pengalaman mengenai pemanfaatan berbagai feedback untuk meningkatkan kualitas peta, khususnya penggunaan GPS trace untuk mengenali inkonsistensi dalam data peta, dengan sistem yang dinamakan CatchMapError (CatchME).

Rilis Produk

  1. Facebook launches PyTorch 1.1 with TensorBoard support
    Facebook meluncurkan PyTorch 1.1 dengan dukungan TensorBoard dan peningkatan kompiler just-in-time (JIT). PyTorch 1.1 hadir dengan API baru, dukungan untuk tensor Boolean, recurrent neural networks kustom, dan peningkatan kompiler JIT untuk mengoptimalkan grafik komputasi.
  2. Open Sourcing Delta Lake
    Delta Lake adalah layer penyimpanan yang menjanjikan keandalan untuk data lake yang dibangun di atas HDFS dan penyimpanan cloud dengan menyediakan transaksi ACID melalui kontrol konkurensi optimis antara penulisan dan isolasi snapshot untuk pembacaan yang konsisten selama penulisan. Delta Lake juga menyediakan built-in data versioning untuk rollbacks dan pembuatan reports yang lebih mudah.Delta Lake tersedia di http://delta.io untuk diunduh dan digunakan di bawah Lisensi Apache 2.0.
  3. RStudio 1.2 Released
    Versi ini dirilis setelah lebih dari setahun development, mencakup banyak peningkatan dan kemampuan baru. Di antaranya, RStudio menjanjikan workbench yang lebih nyaman untuk SQL, Stan, Python, dan D3. Testing kode R yang lebih mudah dengan integrasi untuk shinytest dan testthat. Pembuatan, testing dan publish API dalam R dengan Plumber, serta dukungan background job untuk peningkatan produktivitas.
  4. Apache SINGA (incubating) 2.0.0 Released
    Apache SINGA adalah platform umum deep learning terdistribusi untuk melakukan training terhadap big deep learning model dengan dataset yang besar. Rilis ini mencakup beberapa penambahan fitur.
  5. Apache Beam 2.12.0 released
    Rilis ini mencakup beberapa penambahan fitur, peningkatan, dan perbaikan bugs.
  6. The Apache Software Foundation Announces Apache® SkyWalking™ as a Top-Level Project
    Apache Skywalking adalah tool Application Performance Monitor (APM) yang digunakan di Alibaba, China Eastern Airlines, Huawei, dan lain-lain. Memasuki Apache inkubator pada Desember 2017, baru-baru ini SkyWalking dinyatakan sebagai top level project Apache.

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
  • Apr 26 / 2019
  • Comments Off on Seputar Big Data edisi #70
Apache, Artificial Intelligece, Hadoop, Spark, Storm

Seputar Big Data edisi #70

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu ke 4 bulan April 2019.

Artikel dan berita

  1. EU votes to create gigantic biometrics database
    Parlemen Eropa minggu lalu memilih untuk menghubungkan serangkaian sistem kontrol perbatasan, migrasi, dan penegakan hukum ke dalam database raksasa, yang berisi data biometrik dari warga negara UE dan non-UE. Sistem ini akan menjadi salah satu basis data pelacakan orang terbesar di dunia setelah sistem yang digunakan oleh pemerintah Cina dan sistem Aadhaar di India.
  2. MongoDB extends into a new mobile Realm
    MongoDB mengumumkan akuisisi terhadap Realm, database lightweight yang dioptimalkan untuk perangkat seluler. Realm adalah database embedded berbasis objek yang sering diposisikan sebagai alternatif dari SQLite yang berusia 20 tahun.
  3. Harvard Medical School’s AI estimates protein structures up to a million times faster than previous methods
    Resep pembentukan protein (komponen dasar dari jaringan, enzim dan antibodi) tercantum dalam DNA. Namun DNA hanya menunjukkan komponen apa saja yang membentuknya, bukan struktur atau bentuk akhir dari protein tersebut. Para ahli memperkirakan bahwa diperlukan 13.8 miliar tahun untuk mencari tahu semua konfigurasi yang mungkin dari ribuan amino acid untuk menentukan struktur yang paling tepat. Para peneliti di Harvard Medical School berhasil membuat sebuah program yang dapat memberikan prediksi struktur protein tersebut hingga jutaan kali lebih cepat dari sistem yang ada sekarang, tanpa mengurangi akurasi.
  4. How Can Artificial Intelligence Help Fintech Companies?
    Teknologi keuangan dan perusahaan fintech berada di ujung tombak perkembangan teknologi industri keuangan. Salah satu teknologi yang banyak digunakan adalah kecerdasan buatan. Dengan AI, perusahaan di seluruh dunia mulai melakukan hal-hal luar biasa. Apa saja pemanfaatan AI dalam bidang fintech?
  5. Using AI to Make Knowledge Workers More Effective
    Berbagai kemampuan baru AI membuka kemungkinan kolaborasi antara mesin dan manusia. Dengan AI, mesin dapat memperluas keahlian manusia dan menghasilkan tenaga ahli baru. Sistem semacam ini diperkirakan mempengaruhi 48% tenaga kerja Amerika yang termasuk knowledge-worker, dan lebih dari 230 juta knowledge-worker di dunia. Berikut ini beberapa cara memanfaatkan AI untuk meningkatkan efektifitas tenaga kerja tersebut.
  6. Become a Vital Asset to an Organization: Get a Big Data Hadoop and Apache Spark Developer Certification
    Dalam dunia yang semakin bergantung pada data dan teknologinya, kebutuhan terhadap tenaga yang memiliki kemampuan dalam pengolahan dan analisis data sangat besar. Oleh karenanya, salah satu cara untuk menjadi ‘aset’ penting yang banyak dibutuhkan adalah dengan mendapatkan sertifikasi di bidang teknologi big data, di antaranya Hadoop dan Spark developer.

Tutorial dan pengetahuan teknis

  1. Data Visualization in Python: Matplotlib vs Seaborn
    Seaborn dan Matplotlib adalah dua library Python untuk visualisasi yang paling terkenal. Seaborn menggunakan lebih sedikit sintaks dan memiliki tema default yang memukau dan Matplotlib lebih mudah disesuaikan dengan mengakses kelas-kelasnya.
  2. Fine-Grained Authorization with Apache Kudu and Impala
    Apache Impala memungkinkan otorisasi tingkat object (fine-grained) terhadap semua tabel yang dikelolanya, termasuk tabel Apache Kudu, melalui Apache Sentry. Dalam artikel ini dijelaskan bagaimana menggabungkan otorisasi tersebut dengan otorisasi fine-grained yang dimiliki Apache Kudu untuk mendapatkan deployment multi-tenant yang aman.
  3. Apache Storm Tutorial
    Tutorial dasar mengenai Apache Storm beserta contoh implementasinya.
  4. Architectural Innovations in Convolutional Neural Networks for Image Classification.
    CNN terdiri dari dua elemen yang sangat sederhana, yaitu layer convolutional dan layer pooling. Meskipun sederhana, terdapat hampir tak terbatas cara untuk mengatur layer ini. Dalam tutorial ini Anda akan menemukan beberapa arsitektur kunci untuk penggunaan jaringan saraf convolutional untuk menyelesaikan permasalahan klasifikasi gambar.
  5. [DATASET] Stanford ML Release MRNet Knee MRI Dataset
    Stanford ML Group yang dipimpin oleh Andrew Ng telah merilis MRNet Dataset, yang berisi lebih dari 1000 hasil pemindaian MRI lutut beranotasi serta mengumumkan kompetisi terbuka untuk pembuatan model yang secara otomatis dapat menginterpretasikan data tersebut.

Rilis Produk

  1. Uber Submits Hudi, an Open Source Big Data Library, to The Apache Software Foundation
    Dalam proses membangun kembali platform Big Data-nya, Uber menciptakan library Spark open-source bernama Hadoop Upserts dan Incremental (Hudi). Pustaka ini memungkinkan pengguna untuk melakukan operasi seperti memperbarui, menyisipkan, dan menghapus data Parquet yang ada di Hadoop. Setelah meng-opensource-kan Hudi pada 2017 lalu, baru-baru ini Uber menyerahkan Hudi kepada Apache Software Foundation untuk memperluas jangkauan dan dukungan opensource terhadap Hudi.
  2. Apache Accumulo 1.9.3
    Apache Accumulo 1.9.3 mengandung perbaikan bug untuk log write-ahead, compactions, dan lain sebagainya. Pengguna versi sebelumnya disarankan untuk mengupgrade ke versi ini (lihat rilis note untuk keterangan lebih detail).
  3. Apache Kylin 3.0.0-alpha released
    Rilis ini adalah versi alpha dari Kylin v3.0, yang memperkenalkan fitur Real-time OLAP. Seluruh perubahan dalam rilis ini dapat ditemukan di: https://kylin.apache.org/docs/release_notes.html

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
Pages:123456
Tertarik dengan Big Data beserta ekosistemnya? Gabung