:::: MENU ::::

Posts Categorized / Google

  • Jun 20 / 2022
  • Comments Off on Seputar Big Data Edisi #84
AI, Apache, Artificial Intelligece, Big Data, Blockchain, Cryptocurrency, Google, Implementation, Komunitas, Social Media

Seputar Big Data Edisi #84

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama pertengahan pertama bulan juni 2022.

Artikel dan berita

  1. LaMDA and the Sentient AI Trap
    Google baru-baru ini memberikan status cuti administratif kepada Blake Lemoine, peneliti Google AI, setelah yang bersangkutan mempublikasikan klaim bahwa LaMDA, sebuah model bahasa yang dirancang untuk berkomunikasi dengan manusia, hidup, memiliki akal dan empati. Lemoine bahkan menuntut diberikannya perwakilan hukum untuk LaMDA. Sementara itu, para ahli di bidang etika menyatakan bahwa perdebatan tentang apakah sebuah model AI memiliki kesadaran sebagai makhluk hidup, justru mengalihkan perhatian dari masalah yang lebih penting dan nyata, seperti kolonialisme AI, salah tangkap akibat bias, dll.
  2. Social Engineering Kill–Chain: Predicting, Minimizing & Disrupting Attack Verticals
    Social engineering adalah modus yang menarik bagi penjahat saiber, karena dengan biaya dan resiko rendah, dapat memberikan keberhasilan tinggi. Pada kenyataannya, meskipun teknologi cybersecurity semakin maju, kerentanan keamanan oleh manusia tetap sama. Dalam Cybersecurity Insight Reports menyatakan bahwa serangan rekayasa sosial dan human error sebagai salah satu dari 3 ancaman teratas selama beberapa tahun terakhir. Artikel ini membahas dengan cukup dalam mengenai rekayasa sosial dalam cybersecurity, serta langkah yang perlu diambil untuk mengatasinya.
  3. ‘The Music Has Stopped’: Crypto Firms Quake as Prices Fall
    Seiring dengan goncangnya pasar cryptocurrency, perusahaan-perusahaan kripto memberhentikan staf, membekukan penarikan, dan melakukan berbagai tindakan untuk membendung kerugian. Hal ini menimbulkan banyak pertanyaan tentang kesehatan dan kestabilan ekosistem kripto secara umum.
  4. Big Data Dukung Pupuk Kaltim Raup Laba Bersih Rp3,19 Triliun
    Setelah membukukan laba mengesankan pada tahun 2021, senilai Rp 6,17 triliun, terbesar dalam sejarahnya, PT Pupuk Kaltim (PKT) memulai 2022 dengan optimistis. Pada kuartal 1 2022, PKT membukukan laba bersih Rp3,19 triliun, meningkat hampir empat kali lipat dibandingkan dengan kuartal 1 2021 (year on year).Salah satu kunci kesuksesan mereka adalah transformasi digital untuk meningkatkan kinerja, serta diperkuat dengan pemanfaatan Big Data dalam program MAKMUR, sebuah program kemitraan pertanian terpadu yang dipelopori PKT.
  5. Future of UK Defence Artificial Intelligence Launched
    Pemerintah Inggris mengungkapkan rencana untuk masa depan teknologi pertahanan Kecerdasan Buatan (AI) Inggris yang mutakhir pada London Tech Week AI Summit. Strategi dan kebijakan tentang penggunaan AI yang ‘Ambisius, Aman, dan Bertanggung Jawab’ untuk mendukung Pusat Pertahanan AI yang baru, yang akan menjadi pusat visioner untuk mendukung dan mengembangkan teknologi ini di seluruh Angkatan Bersenjata Inggris.Pemerintah Inggris mengungkapkan rencana untuk masa depan teknologi pertahanan Kecerdasan Buatan (AI) Inggris yang mutakhir pada London Tech Week AI Summit. Strategi dan kebijakan tentang penggunaan AI yang ‘Ambisius, Aman, dan Bertanggung Jawab’ untuk mendukung Pusat Pertahanan AI yang baru, yang akan menjadi pusat visioner untuk mendukung dan mengembangkan teknologi ini di seluruh Angkatan Bersenjata Inggris.

Tutorial dan pengetahuan teknis

  1. R Fundamentals – From Syntax to Control Structures
    Pengenalan dasar mengenai R, mulai dari apakah bahasa R, bagaimana menulis kode dalam R, komponen dan utilitas RStudio. Artikel ini bertujuan untuk membantu dalam mengenal sintaks dan fungsi umum dari bahasa R, dan menggunakan RStudio untuk menulis serta mengeksekusi kode R untuk melakukan operasi dasar
  2. Modernizing Testing With Data Pipelines
    Pelajari bagaimana sintesis data dan data pipelines dapat menawarkan solusi yang scalable untuk membuat data yang konsisten serta menyerupai kebutuhan dunia nyata, untuk kebutuhan pengujian sistem.
  3. 3 Ways Understanding Bayes Theorem Will Improve Your Data Science
    Teorema Bayes memberikan cara untuk mengupdate keyakinan kita berdasarkan bukti baru, dengan mempertimbangkan kekuatan keyakinan kita sebelumnya. Dengan menggunakan teorema Bayes, kita berusaha menjawab pertanyaan: bagaimana kemungkinan hipotesis saya berdasarkan bukti baru?
    Artikel ini berbicara tentang tiga cara agar Teorema Bayes dapat meningkatkan kemampuan Data Science kita.
  4. An End-to-End Guide to Publish Your Python Package
    Artikel ini merupakan demo end-to-end untuk melakukan code sharing. Proyek ini bertujuan untuk membantu Anda memahami cara memublikasikan modul/paket python dengan benar di PyPI secara eksternal dan membagikan pekerjaan dengan kolega Anda secara internal.
  5. Docker for Data Science: What every data scientist should know about Docker
    Saat ini Docker sudah menjadi kelaziman bagi data saintis, karena memudahkan untuk melakukan deployment aplikasi beserta dependensinya, tanpa ‘membahayakan’ sistem secara umum. Untuk itu seorang data saintis setidaknya perlu mengetahui apa itu docker dan bagaimana membuat kontainer dengan docker.
  6. Using Normalization Layers to Improve Deep Learning Models
    Jika normalisasi input membantu meningkatkan kinerja model Deep Learning, apakah standarisasi input ke setiap layer dapat membantu meningkatkan kinerja model juga?
    Artikel ini membahas mengenai serba-serbi layer normalisasi serta batch normalization, sebuah teknik untuk menstandarisasi input ke setiap layer di seluruh batch.
  7. Data Statistics and Analysis With Java and Python
    Java dan Python adalah dua bahasa komputer paling populer yang digunakan saat ini. Keduanya sangat matang dan menyediakan alat dan ekosistem teknologi untuk mendukung pengembangan solusi untuk masalah menantang yang muncul di dunia data science. Penting untuk memahami bagaimana keduanya menangani masalah yang berbeda, serta keunggulan dan kelemahan masing-masing. Kapan perlu memilih salah satu, dan kapan menggabungkan keduanya.Artikel ini menjelaskan mengenai cara menganalisis data tabular menggunakan Java Streams dan Python Pandas, serta membandingkan bagaimana kinerja dan skala untuk sejumlah besar data.
  8. [FREE Ebook] IPython Cookbook, Second Edition (2018)
    IPython Cookbook, Second Edition (2018) by Cyrille Rossant. Python merupakan salah satu bahasa pemrograman terpopuler untuk data science dan komputasi numerik. IPython memberikan antarmuka interaktif yang efisien untuk analisis dan visualisasi data.Buku ini berisi banyak resep yang praktis untuk komputasi numerik dan analisis data. Menjelaskan pengenalan dasar hingga trik canggih IPython/Jupyter, untuk membantu Anda menulis kode yang lebih baik dan lebih cepat.Bagian pertama buku ini mencakup teknik pemrograman: kualitas kode dan reproduksibilitas, optimalisasi kode, komputasi paralel, serta graphic card programming. Bagian kedua membahas data science, statistik, machine learning, pemrosesan sinyal dan citra, dynamical system, pemrosesan data GIS, serta matematika murni dan terapan.

Rilis Produk

  1. Apache Flume 1.10.0 released
    Apache Flume team mengumumkan release Flume versi 1.10.0.
    Flume adalah service terdistribusi, handal, dan efektif untuk mengumpulkan, meng-agregasi, dan memindahkan log data berukuran besar. Flume 1.10.0 memperbaiki CVE-2022-25167, vulnerability di JMSSource yang berkaitan dengan penggunaan JNDI.
  2. Apache Impala 4.1.0 release
    Tim Apache Impala mengumumkan rilis Impala 4.1.0. Impala adalah mesin SQL terdistribusi berkinerja tinggi. Rilisnya tersedia di: https://impala.Apache.org/downloads.html
  3. Apache SkyWalking 9.1.0 released
    SkyWalking: alat monitor kinerja aplikasi untuk Sistem terdistribusi, yang dirancang khusus untuk microservice, cloud native, dan arsitektur berbasis container (Docker, Kubernetes, Mesos).Rilis ini berisi sejumlah fitur baru, perbaikan bug, dan peningkatan dari versi 9.0.0.
  4. OpenNLP 2.0.0 released
    Apache OpenNLP library adalah toolkit berbasis pembelajaran mesin untuk pemrosesan teks bahasa alami. Mendukung berbagai proses NLP yang paling umum, seperti tokenisasi, segmentasi kalimat, part-of-speech tagging, ekstraksi named-entity, chunking, dan parsing.
  5. Apache Hop 2.0.0
    Rilis 2.0.0 ini merupakan rilis major yang mencakup penyelesaian 151 tiket.Hop adalah platform integrasi data open source yang mudah digunakan, cepat dan fleksibel.Hop bertujuan bertujuan untuk memfasilitasi semua aspek orkestrasi data dan metadata. Pengembangan visual memungkinkan developer menjadi lebih produktif.
  6. Apache Bigtop 3.1.0 released
    Bigtop adalah proyek Apache Foundation untuk Infrastructure Engineer dan Data Scientist yang membutuhkan packaging, pengujian, dan konfigurasi komprehensif komponen big data open source terkemuka. Bigtop mendukung berbagai komponen/proyek, termasuk di antaranya Hadoop, HBase, Spark, dll.
    Beberapa highlight dari rilis ini meliputi:

    • Dukungan untuk Debian 11, Fedora 35, dan Rocky Linux 8
    • Upgrade terhadap beberapa komponen misalnya, HBase, Kafka, Spark, Zeppelin , ZooKeeper, dll.

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
  • Apr 08 / 2022
  • Comments Off on Seputar Big Data Edisi #83
AI, Apache, Artificial Intelligece, Big Data, Google, Implementation, IoT, Komunitas, machine learning

Seputar Big Data Edisi #83

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data, Data Science, dan AI, yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama bulan Maret 2022

Artikel dan berita

  1. Google uses deep learning to design faster, smaller AI chips
    Googler dan akademisi UC Berkeley menemukan cara menggunakan kecerdasan buatan untuk merancang chip yang lebih cepat dan lebih kecil, yang dapat mengakselerasi kecerdasan buatan.

    Para peneliti mengatakan, mereka telah mengembangkan pendekatan deep learning bernama PRIME, yang menghasilkan arsitektur chip AI dengan menggambar dari cetak biru dan catatan perhitungan kinerja yang ada. Mereka mengklaim pendekatan ini dapat menghasilkan desain dengan latensi lebih rendah dan membutuhkan lebih sedikit ruang daripada akselerator EdgeTPU dalam lingkungan produksi Google, maupun desain lain yang dibuat menggunakan tools tradisional.

    Paper dapat diakses di : https://arxiv.org/abs/2110.11346

  2. A Decade of Deep Learning: How the AI Startup Experience Has Evolved
    Dalam interview ini, Richard Socher membahas sejumlah topik, termasuk: berbagai perubahan terkait startup AI dalam dekade terakhir; perbedaan antara penerapan AI untuk perusahaan startup, perusahaan besar, maupun dunia akademis; dan bagaimana teknik machine learning baru, seperti model transformator, memberdayakan perusahaan untuk membangun produk canggih dengan sumber daya yang jauh lebih kecil dibanding yang mereka butuhkan sebelumnya.

  3. Basarnas akan Diperkuat Sistem Informasi Geografis, Analisa Big Data hingga AI
    Kepala Badan Nasional Pencarian dan Pertolongan (Basarnas), Marsekal Madya TNI Henri Alfiandi mengungkapkan, pihaknya melakukan operasi penyelamatan sebanyak 2.264 kali di tahun 2021. Operasi penyelamatan yang dilakukan Basarnas itu terdiri dari kecelakaan pesawat, kapal, bencana hingga kondisi membahayakan manusia.
    Henri menyampaikan Basarnas bermitra dengan Esri Indonesia sebagai penyedia solusi geospasial di Indonesia untuk meningkatkan pemanfaatan teknologi Sistem Informasi Geografis (SIG), Analisa Big Data, dan Teknologi Kecerdasan Buatan (AI).

  4. Pakar: Jangan Percaya Big Data Luhut Jika Tak Berani Dibuka
    Pendiri Drone Emprit, Ismail Fahmi meminta publik untuk tidak mudah percaya terhadap pihak yang mengklaim memiliki big data namun enggan transparan. Dia merespons pernyataan Menko Marves Luhut Binsar Pandjaitan yang menyebut 110 juta orang di media sosial setuju Pemilu 2024 ditunda.

    “Ketika ada yang klaim big data, tapi tanpa buka metodologinya, itu jangan langsung dipercaya. Jadi harus terbuka metodologinya, supaya peneliti lain bisa replikasi ulang klaimnya,” kata Ismail dalam sebuah diskusi di Twitter, Senin (21/3)

  5. How Are Big Data, AI & Social Media Used To Hack Democracy?
    Bisakah demokrasi diretas? Artinya, dapatkah cara berpikir dan apa yang kita pikirkan dipengaruhi tanpa sepengetahuan kita? Gaia Rubera, kepala Department of Marketing and Amplifon Chair in Customer Science di Universitas Bocconi, berpendapat bahwa pertanyaan-pertanyaan ini menjadi semakin penting dalam beberapa tahun terakhir. Menurut Gaia, penggunaan big data, kecerdasan buatan (AI), dan media sosial untuk mencampuri proses pemilu dan mendorong penyebaran informasi yang salah telah mengalami peningkatan selama beberapa tahun terakhir, dan menimbulkan ancaman serius bagi masyarakat.

  6. Auto-generated Summaries in Google Docs
    Salah satu permasalahan utama yang sering dihadapi dalam pengelolaan dokumen adalah bagaimana mendapatkan gambaran singkat isi dokumen dengan cepat untuk dapat memprioritaskan dan memperlakukan dokumen itu dengan tepat dan efektif. Menyusun ringkasan dokumen dapat menjadi tantangan kognitif dan memakan waktu, terlebih ketika dokumen yang yang harus ditangani bervolume besar.
    Untuk mengatasi hal ini, Google Documents kini secara otomatis membuat saran untuk membantu penulis dokumen dalam membuat ringkasan konten, jika tersedia. Artikel ini menjelaskan bagaimana fitur ini diaktifkan menggunakan model pembelajaran mesin yang ‘memahami’ teks dokumen dan, setelah ‘yakin’, menghasilkan 1-2 kalimat deskripsi bahasa alami dari konten dokumen.
    Fitur ini saat ini hanya tersedia untuk pelanggan Google Workspace untuk bisnis.

  7. Andrew Ng predicts the next 10 years in AI
    Wawancara menarik dari VentureBeat dengan Andrew Ng mengenai “pendekatan data-centric” untuk AI, bagaimana cara kerjanya di dunia nyata, serta gambaran besar AI saat ini.

    Sebagai pakar dalam computer vision, Ng percaya bahwa pada suatu saat, pers dan publik akan mendeklarasikan model computer vision sebagai sebuah basis model. Namun memprediksi dengan tepat kapan itu akan terjadi adalah cerita lain. Bagaimana kita akan sampai di sana?

Tutorial dan pengetahuan teknis

  1. Machine learning and phone data can improve targeting of humanitarian aid
    Pandemi COVID-19 sangat berdampak pada banyak negara berpenghasilan rendah dan menengah, menyebabkan kerawanan pangan yang meluas dan penurunan tajam dalam standar hidup. Menanggapi krisis ini, pemerintah dan organisasi kemanusiaan di seluruh dunia telah mendistribusikan bantuan sosial kepada lebih dari 1,5 miliar orang. Penentuan target merupakan tantangan utama dalam mengelola program-program ini: sangat sulit untuk dapat secara cepat mengidentifikasi mereka yang paling membutuhkan dengan data yang tersedia. Dalam artikel ini ditunjukkan bahwa data dari jaringan telepon seluler dapat membantu penentuan target bantuan kemanusiaan. Pendekatan yang digunakan adalah data survei tradisional untuk melatih model pembelajaran mesin guna mengenali pola kemiskinan dari data ponsel; model ini kemudian dapat memprioritaskan bantuan kepada pelanggan seluler termiskin.

  2. A method to automatically generate radar-camera datasets for deep learning applications
    Para peneliti di University of Arizona baru-baru ini mengembangkan pendekatan baru untuk secara otomatis menghasilkan kumpulan data yang berisi gambar kamera-radar berlabel. Pendekatan yang dipresentasikan dalam makalah yang diterbitkan di IEEE Robotics and Automation Letters ini menggunakan algoritma pendeteksian objek yang sangat akurat pada aliran gambar kamera (disebut YOLO) dan teknik asosiasi (dikenal sebagai algoritma Hungaria) untuk pelabelan radar point-cloud.

  3. Is DataOps more than DevOps for data?
    DataOps dan DevOps adalah pendekatan kolaboratif antara pengembang dan tim operasional IT. Tren dimulai dengan DevOps terlebih dahulu. Pendekatan komunikasi dan kolaborasi ini kemudian diterapkan pada pengolahan data. Kedua metode ini sama-sama berprinsip bahwa kolaborasi adalah pendekatan utama untuk pengembangan aplikasi dan tim operasi TI, akan tetapi masing-masing menargetkan area operasi yang berbeda.

  4. Data Visualization in Python with matplotlib, Seaborn and Bokeh
    Visualisasi data adalah aspek penting dari semua aplikasi AI dan machine learning. Kita mendapatkan berbagai insight penting dari data melalui representasi grafis yang berbeda. Dalam tutorial ini, kita akan berbicara tentang beberapa opsi untuk visualisasi data dengan Python. Menggunakan dataset MNIST dan library Tensorflow untuk pemrosesan angka dan manipulasi data. Untuk mengilustrasikan berbagai metode dalam membuat berbagai jenis grafik, akan digunakan matplotlib, Seaborn dan Bokeh.

  5. A guide to implementing DevSecOps
    Panduan yang dapat diunduh ini dapat membantu Anda memetakan transformasi DevOps ke DevSecOps di organisasi Anda.

  6. Ploomber vs Kubeflow: Making MLOps Easier
    Artikel singkat ini mencoba menangkap perbedaan utama antara tools MLops Ploomber dan Kubeflow. Membahas beberapa latar belakang tentang apa itu Ploomber, pipeline Kubeflow, dan bagaimana keduanya dapat memudahkan implementasi dan operasional.

Rilis Produk

  1. Apache IoTDB 0.13.0 released
    Tim Apache IoTDB mengumumkan rilis Apache IoTDB 0.13.0.
    Apache IoTDB (Database untuk Internet of Things) adalah database native IoT dengan kinerja tinggi untuk manajemen dan analisis data, dapat diterapkan di edge dan cloud.
    Versi ini adalah versi major IoTDB, yang mencakup sejumlah fitur dan peningkatan baru

  2. Apache Qpid Proton 0.37.0 released
    Komunitas Apache Qpid (https://qpid.apache.org) mengumumkan ketersediaan segera Apache Qpid Proton 0.37.0.
    Apache Qpid Proton adalah messaging library untuk Advanced Message Queuing Protocol 1.0 (AMQP 1.0, ISO/IEC 19464, https://www.amqp.org ). Qpid Pronton dapat digunakan dalam berbagai aplikasi messaging termasuk broker, klien, router, bridge, proxy, dan banyak lagi.

  3. Apache SeaTunnel(Incubating) 2.1.0 released
    Tim Apache SeaTunnel(Incubating) mengumumkan rilis Apache SeaTunnel 2.1.0.
    SeaTunnel: SeaTunnel(Incubating) adalah platform integrasi data berkinerja tinggi yang terdistribusi untuk sinkronisasi dan transformasi data sangat besar (offline & real-time).

  4. Apache Tuweni (incubating) 2.2.0-incubating released
    Tim Apache Tuweni mengumumkan rilis Apache Tuweni (inkubasi) 2.2.0.
    Apache Tuweni adalah seperangkat library dan tools untuk membantu pengembangan blockchain dan perangkat lunak terdesentralisasi lainnya di Java dan bahasa JVM lainnya.
    Mencakup library byte tingkat rendah, codec serialisasi dan deserialisasi (misalnya RLP), berbagai fungsi dan primitive kriptografi, dan banyak utilitas bermanfaat lainnya. Tuweni dikembangkan untuk JDK 11 atau lebih tinggi, dan tergantung pada berbagai perpustakaan FOSS lainnya.

  5. Apache Geode 1.13.8
    Komunitas Apache Geode mengumumkan ketersediaan Apache Geode 1.13.8.
    Geode adalah platform manajemen data yang menyediakan model konsistensi seperti database, pemrosesan transaksi yang andal, dan arsitektur shared-nothing untuk mempertahankan kinerja latensi yang sangat rendah dengan pemrosesan konkurensi tinggi. Apache Geode 1.13.8 berisi sejumlah perbaikan bug. Pengguna sangat disarankan untuk meningkatkan ke rilis 1.14.x terbaru (saat ini 1.14.3).

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
  • Nov 28 / 2019
  • Comments Off on Seputar Big Data edisi #79
Seputar Big Data #79
AI, Apache, Artificial Intelligece, Big Data, Google, Hadoop, Komunitas, machine learning, Medical Analytics, Social Media

Seputar Big Data edisi #79

Seputar Big Data #79

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama pekan terakhir bulan November 2019

Artikel dan berita
  1. How to Become a Data Scientist (Skills + Qualifications)
    Kebutuhan akan data scientist saat ini sedang meningkat. Karir sebagai data scientist merupakan karir yang banyak dicita-citakan dan menawarkan gaji yang menggiurkan.
  2. An Intro to AI for people that hate math and can’t code
    Berikut adalah kursus singkat AI untuk manajer, pemilik bisnis, dan peran non-teknis lainnya yang ingin memahami Kecerdasan Buatan untuk mulai menggunakannya dalam institusi.
  3. McKinsey survey: AI boosts revenue, but companies struggle to scale use
    Survei Global McKinsey terbaru yang dirilis pekan lalu menemukan bahwa kecerdasan buatan memiliki dampak positif pada hasil bisnis, dengan 63% responden melaporkan peningkatan pendapatan setelah adopsi teknologi. Namun, hanya 30% perusahaan yang menerapkan AI ke beberapa unit bisnis, atau naik dari 21% tahun lalu.
  4. Introducing the Next Generation of On-Device Vision Models: MobileNetV3 and MobileNetEdgeTPU
    Google mengumumkan rilis source code dan checkpoint untuk model MobileNetV3 dan MobileNetEdgeTPU. Model-model tersebut adalah hasil perkembangan terbaru dalam teknik AutoML yang mengenali perangkat keras serta perkembangan dalam desain arsitektur. Pada CPU seluler, MobileNetV3 dua kali lebih cepat dari MobileNetV2 dengan akurasi yang setara, dan semakin maju untuk jaringan computer vision mobile.
  5. Powered by AI: Instagram’s Explore recommender system
    Menurut Facebook, lebih dari setengah pengguna Instagram yang mencapai 1 miliar mengunjungi Instagram Explore untuk menemukan video, foto, streaming langsung, dan Story setiap bulannya. Oleh karena itu, membangun mesin rekomendasi menjadi tantangan teknis, salah satunya karena tuntutan fungsi real time. Dalam posting blog ini Facebook mengupas cara kerja Instagram Explore, yang menggunakan bahasa kueri dan teknik pemodelan kustom. Sistem ini mengekstrak setidaknya 65 miliar fitur dan membuat 90 juta prediksi model setiap detiknya.
Tutorial dan Pengetahuan Teknis
  1. Scaling Apache Airflow for Machine Learning Workflows
    Apache Airflow adalah platform yang cukup populer untuk membuat, menjadwalkan, dan memantau workflow dengan Python, tetapi ia dibuat untuk keperluan proses ETL. Dengan menggunakan Valohai, kita dapat menggunakan Apache Airflow untuk membantu proses machine learning.
  2. Google’s BERT changing the NLP Landscape
    Salah satu perkembangan drastis dalam Pemrosesan Bahasa Alami (NLP) adalah peluncuran Representasi Encoder Bidirectional Google dari Transformers, atau model BERT - model yang disebut model NLP terbaik yang pernah didasarkan pada kinerja superiornya atas berbagai macam tugas.
  3. Exploring Apache NiFi 1.10: Parameters and Stateless Engine
    Pada artikel ini, dibahas versi terbaru Apache NiFi dan bagaimana menggunakan dua fitur baru terbesar: parameter dan stateless.
  4. Unsupervised Sentiment Analysis
    Salah satu implementasi dari metode NLP adalah analisa sentimen, di mana Anda mencoba mengekstrak informasi mengenai emosi penulis. Artikel berikut menjelaskan cara melakukan analisa sentimen menggunakan data tanpa label.
  5. Text Encoding: A Review
    Kunci untuk melakukan operasi teks mining adalah mengubah teks menjadi vektor numerik, atau biasa disebut text encoding. Setelah teks ditransformasi menjadi angka, kita dapat memanfaatkan berbagai algoritma pembelajaran mesin untuk klasifikasi dan klastering. Artikel ini membahas beberapa teknik encoding yang banyak digunakan dalam teks mining.
Rilis Produk
  1. Apache BookKeeper 4.10.0 released
    The 4.10.0 release incorporates hundreds of bug fixes, improvements, and features since previous major release, 4.9.0. Apache BookKeeper/DistributedLog users are encouraged to upgrade to 4.10.0.
    Rilis 4.10.0 adalah rilis major, yang mencakup ratusan perbaikan bug, peningkatan, dan fitur sejak rilis 4.9.0. Pengguna Apache BookKeeper/DistributedLog disarankan untuk melakukan upgrade ke 4.10.0.
  2. Apache Libcloud 2.6.1 release
    Libcloud adalah library Python yang mengabstraksi perbedaan berbagai API penyedia cloud. Library ini memungkinkan pengguna untuk mengelola layanan cloud (server, penyimpanan, load balancer, DNS, containers as a service) yang ditawarkan oleh banyak penyedia berbeda melalui API tunggal, terpadu, dan mudah digunakan.
    Libcloud v2.6.1 mencakup berbagai perbaikan bug dan peningkatan.
  3. Apache Kudu 1.11.1 Released
    Apache Kudu 1.11.1 adalah rilis perbaikan bugs.


Contributor :

Tim idbigdata always connect to collaborate every innovation 🙂
Tertarik dengan Big Data beserta ekosistemnya? Gabung