:::: MENU ::::

Seputar Big Data edisi #1

Seputar Big Data edisi #1

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu pertama bulan Januari 2017.

Artikel dan berita

  1. datafloq.com - 4 Industries Leading the Way in IoT Integration
    Perkembangan Internet of Thing saat ini sangat pesat. Diprediksi dalam waktu dekat, hampir semua perangkat akan terkoneksi satu sama lainnya untuk membuat hidup kita lebih mudah. Ada 4 industri yang diperkirakan akan mengambil manfaat dari IoT.
  2. AWS Big Data Blog - Decreasing Game Churn: How Upopa used ironSource Atom and Amazon ML to Engage Users
    Apakah pernah mengalami kesulitan untuk menjaga loyalitas pengguna supaya tidak meninggalkan game atau aplikasi, setelah bersusah untuk menarik pengguna? Upopa, sebuah studio game yang memanfaatkan machine learning untuk memprediksi perilaku para pengguna game
  3. oreilly.com - 7 AI trends to watch in 2017
    Pada tahun 2016 lalu, banyak terjadi inovasi-inovasi yang luar biasa, banyak investasi di bidang Artificial Intelligent baik pada perusahaan besar maupun startup. Bagaimana dengan tahun 2017?
  4. DZone - Understanding Machine Learning
    Apa sebetulnya Machine Learning? Sebuah penjelasan mengenai machine learning, cara kerjanya dan bagaimana penggunaannya.
  5. Yahoo Finance - Hadoop Big Data Analytics Market Worth 40.69 Billion USD by 2021
    Menurut sebuah laporan market research yang dipublikasikan oleh MarketsandMarkets, pasar big data analytics akan berkembang dari USD 6.71 miliar di tahun 2016 akan menjadi USD 40.69 miliar di tahun 2021.
  6. insideBIGDATA - Loggly Introduces Gamut™ Search for Massive-Scale Log Analysis
    Loggly, perusahaan di balik, kelas enterprise layanan manajemen log berbasis cloud, memperkenalkan Gamut ™ Search, teknologi analisa log yang khusus dirancang untuk merespon langsung pencarian pada data bervolume sangat besar dan dalam periode waktu yang lama.
  7. BrightPlanet - Social Media Data – Instagram Pulls Back on API Access
    Program pemantauan sosial media perlu melakukan perubahan dan terbuka untuk opsi lain pada data open-source. Seperti Instagram melakukan beberapa perubahan akses API, dan akses ke data-data akan dibatasi.

 

Tutorial dan pengetahuan teknis

  1. ZDNet - Hands-on with Azure Data Lake: How to get productive fast
    Microsoft Azure Data Lake saat ini telah tersedia secara umum, tapi apa fungsinya, dan bagaimana cara kerjanya? Artikel berikut merupakan overview seputar tools dan kemampuan layanan, untuk membantu memahami dan meningkatkan produktifitas.
  2. KDnuggets - Internet of Things Tutorial: WSN and RFID – The Forerunners
    Wireless Sensor Network dan RFID adalah kunci utama untuk memahami konsep-konsep yang lebih kompleks dari IoT dan teknologinya.
  3. KDnuggets - Internet of Things Tutorial: WSN and RFID – The Forerunners
    Wireless Sensor Network dan RFID adalah kunci utama untuk memahami konsep-konsep yang lebih kompleks dari IoT dan teknologinya.
  4. IBM Big Data Hub - How to build an all-purpose big data engine with Hadoop and Spark
    Beberapa organisasi sering salah dalam mengoptimalkan penggunakan Hadoop dan Spark bersama-sama, terutama karena masalah kompleksitas. Padalah kombinasi keduanya memungkinkan untuk analisa data yang lebih luas dan mendukung use case yang lebih banyak.
  5. DZone Big Data - Kafka Avro Scala Example
    Tutorial mengenai cara menulis dan membaca pesan dalam format Avro dari/ke Kafka. Bagaimana cara menghasilkan pesan untuk dikodekan menggunakan Avro, cara mengirim pesan tersebut ke Kafka, dan bagaimana untuk mengkonsumsi dengan konsumen dan akhirnya bagaimana untuk dibaca dan digunakan.
  6. IBM Hadoop Dev - Enable Snappy Compression for Improved Performance in Big SQL and Hive
    Ketika loading data ke dalam tabel Parquet, Big SQL akan menggunakan kompresi Snappy secara default. Pada Hive, secara default kompresi tidak diaktifkan, akibatnya tabel bisa secara signifikan menjadi lebih besar
  7. KDnuggets - Generative Adversarial Networks – Hot Topic in Machine Learning
    Apa Generative Adversarial Networks (GAN)? Ilustratif sederhana dari GAN adalah dengan mengambil contoh seperti memprediksi frame berikutnya dalam urutan video atau memprediksi kata berikutnya saat mengetik di google search.
  8. MapR - Monitoring Real-Time Uber Data Using Spark Machine Learning, Streaming, and the Kafka API (Part 2)
    Ini merupakan bagian kedua dari tutorial untuk membuat pemantauan secara realtime mobil-mobil yang digunakan oleh Uber. Tutorial ini menggunakan algoritma k-means pada Apache Spark untuk melakukan pengelompokan data secara realtime
  9. LinkedIn Engineering - Asynchronous Processing and Multithreading in Apache Samza, Part I: Design and Architecture
    Apache Samza terus digunakan oleh LinkedIn dan perusahaan lain untuk melakukan pemrosesan stream. Pada sistem pengolahan stream lainnya menyederhanakan model pemrograman untuk menjadi synchronous and stream/event-based, sedangkan Samza mengembangkan model asynchronous.
  10. MapR - Processing Image Documents on MapR at Scale
    Sebuah tutorial dari MapR untuk pemrosesan gambar dengan menggunakan Apache Spark dan Tesseract OCR engine

 

Rilis produk

  1. GitHub - kafka-utilities
    Sebuah project yang dishare oleh wushujames di hithub.com yang memberikan script untuk menganalisa keadaan klaster Kafka, untuk menentukan broker yang dapat digunakan untuk partisi under-replicated
  2. GitHub - burry
    Burry adalah backup recovery tool yang digunakan untuk membackup dan mengembalikan service pada Zookeepr dan etcd. Tools ini dibuat oleh Michael Hausenblas dan dapat diunduh pada github.com

 

Contributor :

Tim idbigdata
always connect to collaborate every innovation 🙂
Tertarik dengan Big Data beserta ekosistemnya? Gabung