:::: MENU ::::

Seputar Big Data Edisi #83

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data, Data Science, dan AI, yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama bulan Maret 2022

Artikel dan berita

  1. Google uses deep learning to design faster, smaller AI chips
    Googler dan akademisi UC Berkeley menemukan cara menggunakan kecerdasan buatan untuk merancang chip yang lebih cepat dan lebih kecil, yang dapat mengakselerasi kecerdasan buatan.

    Para peneliti mengatakan, mereka telah mengembangkan pendekatan deep learning bernama PRIME, yang menghasilkan arsitektur chip AI dengan menggambar dari cetak biru dan catatan perhitungan kinerja yang ada. Mereka mengklaim pendekatan ini dapat menghasilkan desain dengan latensi lebih rendah dan membutuhkan lebih sedikit ruang daripada akselerator EdgeTPU dalam lingkungan produksi Google, maupun desain lain yang dibuat menggunakan tools tradisional.

    Paper dapat diakses di : https://arxiv.org/abs/2110.11346

  2. A Decade of Deep Learning: How the AI Startup Experience Has Evolved
    Dalam interview ini, Richard Socher membahas sejumlah topik, termasuk: berbagai perubahan terkait startup AI dalam dekade terakhir; perbedaan antara penerapan AI untuk perusahaan startup, perusahaan besar, maupun dunia akademis; dan bagaimana teknik machine learning baru, seperti model transformator, memberdayakan perusahaan untuk membangun produk canggih dengan sumber daya yang jauh lebih kecil dibanding yang mereka butuhkan sebelumnya.

  3. Basarnas akan Diperkuat Sistem Informasi Geografis, Analisa Big Data hingga AI
    Kepala Badan Nasional Pencarian dan Pertolongan (Basarnas), Marsekal Madya TNI Henri Alfiandi mengungkapkan, pihaknya melakukan operasi penyelamatan sebanyak 2.264 kali di tahun 2021. Operasi penyelamatan yang dilakukan Basarnas itu terdiri dari kecelakaan pesawat, kapal, bencana hingga kondisi membahayakan manusia.
    Henri menyampaikan Basarnas bermitra dengan Esri Indonesia sebagai penyedia solusi geospasial di Indonesia untuk meningkatkan pemanfaatan teknologi Sistem Informasi Geografis (SIG), Analisa Big Data, dan Teknologi Kecerdasan Buatan (AI).

  4. Pakar: Jangan Percaya Big Data Luhut Jika Tak Berani Dibuka
    Pendiri Drone Emprit, Ismail Fahmi meminta publik untuk tidak mudah percaya terhadap pihak yang mengklaim memiliki big data namun enggan transparan. Dia merespons pernyataan Menko Marves Luhut Binsar Pandjaitan yang menyebut 110 juta orang di media sosial setuju Pemilu 2024 ditunda.

    “Ketika ada yang klaim big data, tapi tanpa buka metodologinya, itu jangan langsung dipercaya. Jadi harus terbuka metodologinya, supaya peneliti lain bisa replikasi ulang klaimnya,” kata Ismail dalam sebuah diskusi di Twitter, Senin (21/3)

  5. How Are Big Data, AI & Social Media Used To Hack Democracy?
    Bisakah demokrasi diretas? Artinya, dapatkah cara berpikir dan apa yang kita pikirkan dipengaruhi tanpa sepengetahuan kita? Gaia Rubera, kepala Department of Marketing and Amplifon Chair in Customer Science di Universitas Bocconi, berpendapat bahwa pertanyaan-pertanyaan ini menjadi semakin penting dalam beberapa tahun terakhir. Menurut Gaia, penggunaan big data, kecerdasan buatan (AI), dan media sosial untuk mencampuri proses pemilu dan mendorong penyebaran informasi yang salah telah mengalami peningkatan selama beberapa tahun terakhir, dan menimbulkan ancaman serius bagi masyarakat.

  6. Auto-generated Summaries in Google Docs
    Salah satu permasalahan utama yang sering dihadapi dalam pengelolaan dokumen adalah bagaimana mendapatkan gambaran singkat isi dokumen dengan cepat untuk dapat memprioritaskan dan memperlakukan dokumen itu dengan tepat dan efektif. Menyusun ringkasan dokumen dapat menjadi tantangan kognitif dan memakan waktu, terlebih ketika dokumen yang yang harus ditangani bervolume besar.
    Untuk mengatasi hal ini, Google Documents kini secara otomatis membuat saran untuk membantu penulis dokumen dalam membuat ringkasan konten, jika tersedia. Artikel ini menjelaskan bagaimana fitur ini diaktifkan menggunakan model pembelajaran mesin yang ‘memahami’ teks dokumen dan, setelah ‘yakin’, menghasilkan 1-2 kalimat deskripsi bahasa alami dari konten dokumen.
    Fitur ini saat ini hanya tersedia untuk pelanggan Google Workspace untuk bisnis.

  7. Andrew Ng predicts the next 10 years in AI
    Wawancara menarik dari VentureBeat dengan Andrew Ng mengenai “pendekatan data-centric” untuk AI, bagaimana cara kerjanya di dunia nyata, serta gambaran besar AI saat ini.

    Sebagai pakar dalam computer vision, Ng percaya bahwa pada suatu saat, pers dan publik akan mendeklarasikan model computer vision sebagai sebuah basis model. Namun memprediksi dengan tepat kapan itu akan terjadi adalah cerita lain. Bagaimana kita akan sampai di sana?

Tutorial dan pengetahuan teknis

  1. Machine learning and phone data can improve targeting of humanitarian aid
    Pandemi COVID-19 sangat berdampak pada banyak negara berpenghasilan rendah dan menengah, menyebabkan kerawanan pangan yang meluas dan penurunan tajam dalam standar hidup. Menanggapi krisis ini, pemerintah dan organisasi kemanusiaan di seluruh dunia telah mendistribusikan bantuan sosial kepada lebih dari 1,5 miliar orang. Penentuan target merupakan tantangan utama dalam mengelola program-program ini: sangat sulit untuk dapat secara cepat mengidentifikasi mereka yang paling membutuhkan dengan data yang tersedia. Dalam artikel ini ditunjukkan bahwa data dari jaringan telepon seluler dapat membantu penentuan target bantuan kemanusiaan. Pendekatan yang digunakan adalah data survei tradisional untuk melatih model pembelajaran mesin guna mengenali pola kemiskinan dari data ponsel; model ini kemudian dapat memprioritaskan bantuan kepada pelanggan seluler termiskin.

  2. A method to automatically generate radar-camera datasets for deep learning applications
    Para peneliti di University of Arizona baru-baru ini mengembangkan pendekatan baru untuk secara otomatis menghasilkan kumpulan data yang berisi gambar kamera-radar berlabel. Pendekatan yang dipresentasikan dalam makalah yang diterbitkan di IEEE Robotics and Automation Letters ini menggunakan algoritma pendeteksian objek yang sangat akurat pada aliran gambar kamera (disebut YOLO) dan teknik asosiasi (dikenal sebagai algoritma Hungaria) untuk pelabelan radar point-cloud.

  3. Is DataOps more than DevOps for data?
    DataOps dan DevOps adalah pendekatan kolaboratif antara pengembang dan tim operasional IT. Tren dimulai dengan DevOps terlebih dahulu. Pendekatan komunikasi dan kolaborasi ini kemudian diterapkan pada pengolahan data. Kedua metode ini sama-sama berprinsip bahwa kolaborasi adalah pendekatan utama untuk pengembangan aplikasi dan tim operasi TI, akan tetapi masing-masing menargetkan area operasi yang berbeda.

  4. Data Visualization in Python with matplotlib, Seaborn and Bokeh
    Visualisasi data adalah aspek penting dari semua aplikasi AI dan machine learning. Kita mendapatkan berbagai insight penting dari data melalui representasi grafis yang berbeda. Dalam tutorial ini, kita akan berbicara tentang beberapa opsi untuk visualisasi data dengan Python. Menggunakan dataset MNIST dan library Tensorflow untuk pemrosesan angka dan manipulasi data. Untuk mengilustrasikan berbagai metode dalam membuat berbagai jenis grafik, akan digunakan matplotlib, Seaborn dan Bokeh.

  5. A guide to implementing DevSecOps
    Panduan yang dapat diunduh ini dapat membantu Anda memetakan transformasi DevOps ke DevSecOps di organisasi Anda.

  6. Ploomber vs Kubeflow: Making MLOps Easier
    Artikel singkat ini mencoba menangkap perbedaan utama antara tools MLops Ploomber dan Kubeflow. Membahas beberapa latar belakang tentang apa itu Ploomber, pipeline Kubeflow, dan bagaimana keduanya dapat memudahkan implementasi dan operasional.

Rilis Produk

  1. Apache IoTDB 0.13.0 released
    Tim Apache IoTDB mengumumkan rilis Apache IoTDB 0.13.0.
    Apache IoTDB (Database untuk Internet of Things) adalah database native IoT dengan kinerja tinggi untuk manajemen dan analisis data, dapat diterapkan di edge dan cloud.
    Versi ini adalah versi major IoTDB, yang mencakup sejumlah fitur dan peningkatan baru

  2. Apache Qpid Proton 0.37.0 released
    Komunitas Apache Qpid (https://qpid.apache.org) mengumumkan ketersediaan segera Apache Qpid Proton 0.37.0.
    Apache Qpid Proton adalah messaging library untuk Advanced Message Queuing Protocol 1.0 (AMQP 1.0, ISO/IEC 19464, https://www.amqp.org ). Qpid Pronton dapat digunakan dalam berbagai aplikasi messaging termasuk broker, klien, router, bridge, proxy, dan banyak lagi.

  3. Apache SeaTunnel(Incubating) 2.1.0 released
    Tim Apache SeaTunnel(Incubating) mengumumkan rilis Apache SeaTunnel 2.1.0.
    SeaTunnel: SeaTunnel(Incubating) adalah platform integrasi data berkinerja tinggi yang terdistribusi untuk sinkronisasi dan transformasi data sangat besar (offline & real-time).

  4. Apache Tuweni (incubating) 2.2.0-incubating released
    Tim Apache Tuweni mengumumkan rilis Apache Tuweni (inkubasi) 2.2.0.
    Apache Tuweni adalah seperangkat library dan tools untuk membantu pengembangan blockchain dan perangkat lunak terdesentralisasi lainnya di Java dan bahasa JVM lainnya.
    Mencakup library byte tingkat rendah, codec serialisasi dan deserialisasi (misalnya RLP), berbagai fungsi dan primitive kriptografi, dan banyak utilitas bermanfaat lainnya. Tuweni dikembangkan untuk JDK 11 atau lebih tinggi, dan tergantung pada berbagai perpustakaan FOSS lainnya.

  5. Apache Geode 1.13.8
    Komunitas Apache Geode mengumumkan ketersediaan Apache Geode 1.13.8.
    Geode adalah platform manajemen data yang menyediakan model konsistensi seperti database, pemrosesan transaksi yang andal, dan arsitektur shared-nothing untuk mempertahankan kinerja latensi yang sangat rendah dengan pemrosesan konkurensi tinggi. Apache Geode 1.13.8 berisi sejumlah perbaikan bug. Pengguna sangat disarankan untuk meningkatkan ke rilis 1.14.x terbaru (saat ini 1.14.3).

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
Tertarik dengan Big Data beserta ekosistemnya? Gabung