:::: MENU ::::

Seputar Big Data edisi #62

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu ke 2 bulan Februari 2019.

Artikel dan berita

  1. Databricks’ Recent $250 Mn Funding Shows How The Spark Creators Are Ahead In The AI Game
    Ali Ghodsi dan Matei Zaharia, penemu Spark dan pendiri Databricks, memanfaatkan perubahan tren dan kebutuhan Big Data dengan menyediakan platform analitik terpadu.
    Bahkan minggu lalu perusahaan yang berbasis di San Francisco tersebut kembali memperoleh putaran pendanaan blockbuster sebesar $250 juta, yang menjadikan nilai dari Databricks sekitar $2,75 miliar.
  2. How to Become a Data Engineer: A Guide
    Salah satu pekerjaan yang paling menarik dan diminati di seluruh dunia saat ini: big data engineer. Big data engineer adalah para profesional yang memproses kumpulan data besar untuk memberikan analisis pada organisasi atau perusahaan, yang selanjutnya dapat digunakan untuk membuat keputusan di masa depan untuk menghindari kesalahan.
  3. Pizza Delivery Businesses Turn to Big Data Analytics for Record Growth
    Big data analytic untuk bisnis pengiriman pizza ternyata memiliki dampak yang luar biasa. Akibatnya, banyak perusahaan pengiriman pizza berkembang pesat.
  4. Toyota’s moonshot: Self-driving car for sale — in a year
    Mereka menyebutnya sebagai Toyota’s moonshot: hanya dalam satu tahun, pembuat mobil terbesar di Jepang ingin mulai menjual kendaraan self-driving yang dikatakannya akan “most powerful supercomputer on wheels”. Milestone pertama yaitu pada tahun 2020, ketika Toyota berencana untuk memperkenalkan kendaraan yang mampu mengemudi sendiri di jalan raya.
  5. Contrasting Hortonworks (HDP) and Dropbox (DBX)
    Dropbox (NASDAQ: DBX) dan Hortonworks (NASDAQ: HDP) keduanya adalah perusahaan komputer dan teknologi, tetapi mana yang merupakan saham unggulan?
  6. Here’s How Big Data Is Transforming Augmented Reality
    Big data benar-benar mengubah fungsi AR dan VR. Artikel berikut menceritakan bagaimana perusahaan modern mengubah AR dari mimpi menjadi kenyataan dengan memanfaatkan kekuatan kumpulan data yang sangat luas.
  7. Here’s What Cybersecurity Experts Worry About This Year
    “Ancaman keamanan big data berikutnya sedang berlangsung,” demikian diungkapkan Jason Hong, associate professor dari the human computer interaction institute, Carnegie Mellon University.
  8. Why Cloudera Stock Gained 22.1% in January
    Saham Cloudera (NYSE: CLDR) naik 22,1% pada Januari, menurut data dari S&P Global Market Intelligence. Saham perusahaan ini sempat mengalami penurunan sekitar 35% dalam tiga bulan terakhir tahun 2018, tetapi diuntungkan dari rebound pasar saham di awal tahun 2019 dan beberapa klarifikasi tentang strateginya setelah merger dengan Hortonworks.

Tutorial dan pengetahuan teknis

  1. Perfume Recommendations using Natural Language Processing
    Doc2Vec, Latent Semantic Analysis, and Sentiment Analysis dapat digabungkan untuk membuat rekomendasi yang tepat dalam sebuah antarmuka chatbot.
  2. Best Public Datasets for Machine Learning and Data Science: Sources and Advice on the Choice
    Ribuan kumpulan data publik tentang berbagai topik – mulai dari tren kebugaran teratas dan resep bir hingga tingkat keracunan pestisida – tersedia online. Untuk menghabiskan lebih sedikit waktu dalam pencarian dataset yang tepat, kita harus tahu di mana mencarinya.
  3. Learning from Graph data using Keras and Tensorflow
    Ada banyak data yang dapat direpresentasikan dalam bentuk graph seperti di jejaring sosial, jaringan biologis atau telekomunikasi. Penggunaan fitur graph dapat meningkatkan kinerja model. Namun, merepresentasikan data graf tidak mudah. Artikel ini mengeksplorasi beberapa cara untuk menangani graf generik untuk melakukan klasifikasi node berdasarkan representasi graf yang dipelajari langsung dari data.
  4. Introduction to Apache Spark’s Core API (Part II)
    Dalam bagian kedua dari serial pengenalan Spark API ini dibahas mengenai fungsi dan method yang dapat digunakan untuk bekerja dengan pair RDD, dilengkapi beberapa contoh dalam Python.
  5. KubernetesExecutor for Airflow
    Dalam rilis 1.10 Airflow memperkenalkan executor baru untuk menjalankan worker secara terskala: Kubernetes executor. Artikel ini membahas mengenai apa itu Airflow dan masalah apa yang dipecahkannya, Kubernetes executor dan bagaimana perbandingannya dengan Celery executor, serta contoh penerapannya di minikube.

Rilis Produk

  1. Microsoft announces general availability of Azure Data Explorer and Azure Data Lake Storage Gen2
    Microsoft mengumumkan ketersediaan umum Azure Data Explorer (ADX) dan Azure Data Lake Storage Gen2 (ADLS Gen2) – dua layanan yang dikatakan akan memberi pelanggan Azure fleksibilitas yang lebih besar dalam mengelola data yang tidak terstruktur, atau data yang dihasilkan dari interaksi di web, software-as-a-service, media sosial, aplikasi seluler, dan perangkat iot.
  2. Black Knight Launches Rapid Analytics Platform, a Premier Cloud-Based Virtual Lab for Working with Big Data and Complex Analytics
    Black Knight, Inc. (NYSE: NYSE: BKI), penyedia terkemuka perangkat lunak, data, dan analisis terintegrasi untuk industri hipotek dan real estat, mengumumkan peluncuran Rapid Analytics Platform (RAP), sebuah lab analitik virtual interaktif yang inovatif dan interaktif di mana pengguna dapat menggunakan dan mengunggah data, mengeksekusi SQL query, melakukan analitik kompleks dan melatih model machine learning – semua dalam satu ruang kerja tunggal.
  3. Apache Solr 7.7.0 released
    Apache Solr 7.7.0 mencakup 7 fitur baru, 20 bug fixes, 15 peningkatan dan 8 perubahan lain. Pengguna Solr versi sebelumnya sangat disarankan melakukan upgrade ke versi ini terkait isu security, yaitu mekanisme whitelist pada manajemen “shards”.
  4. Introducing Ludwig, a Code-Free Deep Learning Toolbox
    Uber merilis Ludwig, “toolbox” open source yang dibangun di atas kerangka kerja TensorFlow Google yang memungkinkan pengguna untuk melatih dan menguji model AI tanpa harus menulis kode. Dengan menggunakan Ludwig, para ahli dan peneliti dapat menyederhanakan proses prototyping dan merampingkan pemrosesan data sehingga mereka dapat lebih fokus pada pengembangan arsitektur deep learning daripada data wrangling.

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
Tertarik dengan Big Data beserta ekosistemnya? Gabung
Jasa joki ml