:::: MENU ::::

Posts Categorized / Hadoop

  • Apr 13 / 2017
  • Comments Off on Seputar Big Data Edisi #10
Big Data, Forum Info, Hadoop, Implementation, IoT, Komunitas

Seputar Big Data Edisi #10

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu kedua bulan april 2017

Artikel dan Berita

  1. UK government using R to modernize reporting of official statistics
    UK Government Digital Service, sebuah badan pemerintah Inggris, meluncurkan project untuk mengotomasi proses pelaporan statistik pemerintah dengan menggunakan R. Project ini bertujuan untuk menyederhanakan pelaporan dengan cara mengotomasi proses ekstraksi data, analisis dan pembuatan dokumen.
  2. Hadoop in finance: big data in the pursuit of big bucks
    Bagaimana Hadoop dan teknologi big data membantu industri keuangan untuk meminimalisir resiko transaksi dan memaksimalkan keuntungan.
  3. How GoDaddy powers its team with big data analytics
    GoDaddy, penyedia layanan web hosting dan registrasi domain name internet yang memiliki 14.7 juta pelanggan, memproses lebih dari 13 terabytes data. GoDaddy membangun online self service analytics dalam rangka memperbaiki layanan dan mengantisipasi berbagai issue.
  4. Predictive analytics can stop ransomware dead in its tracks
    Ransomware menjadi salah satu ancaman yang serius di era digital ini. Data penting dapat terancam hilang begitu saja jika tuntutan penjahat saiber yang menyanderanya tidak dipenuhi. Kerugian yang ditimbulkan sangatlah besar, baik dari sisi biaya, waktu, maupun reputasi. Seperti yang hampir dialami oleh pemerintah kota Livingston, Michigan 2 tahun yang lalu, ketika mereka terancam kehilangan data perpajakan selama 3 tahun. Predictive analytics dan machine learning menjadi salah satu solusi untuk mengantisipasi ancaman keamanan semacam ini.
  5. Look before you leap: 4 hard truths about IoT
    Internet of Things membuka berbagai peluang yang menarik dan disruptive, sehingga menjadi salah satu teknologi yang paling berkembang dan banyak diadopsi saat ini. Namun ada beberapa hal yang perlu diperhatikan untuk dapat memanfaatkan teknologi ini dengan maksimal, di antaranya adalah kualitas data, keamanan, dan standard yang masih terus berubah.
  6. How companies and consumers benefit from AI-powered networks
    Sebagai pemegang 12.500 lebih paten, 8 Nobel, dan pengalaman 140 tahun dalam pengembangan dan ujicoba berbagai ide 'liar', tidaklah mengherankan jika AT&T menjadi salah satu pemain penting dalam bidang AI. Apa saja penerapan AI dan machine learning dalam bisnis AT&T dan apa keuntungan yang dirasakan perusahaan maupun konsumen?

Tutorial dan pengetahuan teknis

  1. Must-Read Free Books for Data Science
    Beberapa free E-book yang berkaitan dengan data science, yang jangan sampai anda lewatkan.
  2. Python Pandas Tutorial: DataFrame Basics
    DataFrame adalah struktur data yang paling umum digunakan dalam Python Pandas. Karena itu, sangat penting untuk mempelajari berbagai hal tentang penggunaan DataFrame tersebut. Tutorial ini menjelaskan beberapa metode penggunaan DataFrame.
  3. How can I bulk-load data from HDFS to Kudu using Apache Spark?
    Seperti yang disebutkan dalam judulnya, video tutorial ini menjelaskan mengenai penggunaan Spark untuk mengunggah data secara bulk dari HDFS ke Kudu.
  4. Federated Learning: Collaborative Machine Learning without Centralized Training Data
    Google research memperkenalkan metode machine learning terbaru yaitu federated learning. Dengan metode ini, tidak perlu lagi mengumpulkan data dari device yang digunakan oleh user untuk digunakan sebagai data training. Saat ini federated learning sedang diujicobakan melalui Gboard on Android.
  5. Accordion: HBase Breathes with In-Memory Compaction
    Aplikasi-aplikasi yang menggunakan Apache HBase dituntut untuk dapat memenuhi kebutuhan kinerja dalam read-write prosesnya. Idealnya, aplikasi tersebut dapat memanfaatkan kecepatan in-memory database, dengan tetap mempertahankan jaminan reliabilitas persistent storage. Accordion adalah sebuah algoritma yang diperkenalkan dalam HBase 2.0, yang ditujukan untuk dapat memenuhi tuntutan tersebut.
  6. Feature Engineering for Churn Modeling
    Churn model dapat membantu dalam menentukan alasan utama customer berhenti menggunakan produk atau layanan anda, namun faktor apa yang akan ditest dan dimasukkan ke dalam model, tergantung keputusan dari data saintist. Proses ini disebut dengan rekayasa fitur (feature engineering).

Rilis produk

  1. Apache Zeppelin Release 0.7.1
    Beberapa perbaikan yang dilakukan dalam rilis ini adalah stabilitas proses restart interpreter, perbaikan interpreter python, perbaikan bug untuk table/chart rendering. 24 kontributor menyumbangkan lebih dari 80 patch, dan lebih dari 70 issue berhasil diselesaikan.
  2. Storm 1.1.0 released
    Rilis ini mencakup supports native Streaming SQL, perbaikan integrasi ke Apache Kafka, PMML support, Druid Integration, OpenTSDB Integration, AWS Kinesis Support, HDFS spout, Flux Improvements, dll.
  3. MapR Releases New Ecosystem Pack with Optimised Security and Performance for Apache Spark
    MEP (MapR Ecosystem Pack) adalah sekumpulan project ekosistem open source yang memungkinkan aplikasi big data untuk berjalan di atas MapR Converged Data Platform dengan kompatibilitas internal. MEP Versi 3.0 mencakup perbaikan dari sisi Spark security, konektor Spark ke MapR-DB dan HBase, update dan integrasi dengan Drill, dan versi Hive yang lebih cepat.

 

Contributor :

Tim idbigdata
always connect to collaborate every innovation 🙂
  • Mar 15 / 2017
  • Comments Off on Paralel DNA Sequence Alignment Diatas Hadoop [Bagian 2]
Big Data, Forum Info, Hadoop, Uncategorized

Paralel DNA Sequence Alignment Diatas Hadoop [Bagian 2]

ini merupakan lanjutan dari artikel PARALEL DNA SEQUENCE ALIGNMENT DIATAS HADOOP [BAGIAN 1]

Implementasi

Implementasi dilakukan dengan memanfaatkan HGrid247 sebagai Big Data engineering tools, yang mendukung pemrosesan dengan MapReduce. Dengan memanfaatkan HGrid247, implementasi sequence alignment dapat dilakukan secara modular, dan dapat memanfaatkan komponen-komponen yang telah ada di HGrid247.

Untuk mengimplementasikan sequence alignment workflow, penulis menambahkan beberapa komponen, yaitu komponen parsing input data, komponen untuk proses alignment, dan komponen untuk formatting output.

Workflow yang dihasilkan adalah seperti di bawah ini:

Artikel_bioinformatik_1

Secara garis besar, proses yang dilakukan adalah sbb:

  1. Data preprocessing : pemrosesan data genbank dan data sample (data input yang akan diproses), sebelum dilakukan alignment.
  2. Filter data genbank, berdasar panjang sekuens yang akan di-align, ditentukan dengan batas atas dan batas bawah. Untuk proses global alignment, idealnya dilakukan antar sekuens yang panjangnya hampir sama, sebab untuk sekuens dengan selisih panjang yang besar, hasil score alignment akan kurang bagus dan akan tersisihkan.
  3. Alignment dan formatting output.

Hasil uji coba

Ujicoba dilakukan pada dua environment, yaitu :

  1. Local Node
  2. Hadoop cluster

Software yang digunakan adalah HGrid247-2.3.2, dan cluster menggunakan Hadoop version 2.5.0 (distro Cloudera versi 5.2.0).

Hasil uji coba pada local node

Artikel_bioinformatik_2

Hasil di atas menunjukkan peningkatan yang signifikan dengan menggunakan metode pemrograman dinamik (iteratif). Di mana pada penelitian sebelumnya yang menggunakan metode rekursif, terjadi stack overflow disaat melakukan alignment untuk panjang sekuens pertama 214 residu dan sekuens kedua 208 residu, dengan menggunakan scoring scheme yaitu Matc h : 2, Mismatch - 3, Gap Opening : 0 dan Gap Extension :0. Sedangkanpada penelitian ini terjadi out of memory saat panjang sekuens pertama dan kedua 5300 residu. Keterbatasan ini disebabkan oleh kapasitas memori perangkat yang digunakan.

Hasil uji coba pada cluster

Dalam uji coba ini digunakan data sample berupa sekuens yang berasal dari mamalia yaitu locus X71497, definition B.taurus microsatellite sequence INRA053. Accession X71497, version X71497.1 GI:509111, dan source Bos taurus (cattle).

Pada uji coba ini yang divariasikan adalah batas atas dan batas bawah yang menentukan data reference yang akan diikutsertakan dalam proses multipairwise alignment. Semakin besar nilainya, maka jumlah record dari genbank yang akan dibandingkan dengan data sample akan semakin besar.

Artikel_bioinformatik_3

Uji coba dengan variasi jumlah node

Pada uji coba ini jumlah node yang digunakan dalam cluster divariasikan.

Artikel_bioinformatik_4

Dari implementasi dan uji coba tersebut, didapatkan kesimpulan bahwa :

Dengan menggunakan teknik iteratif pada algoritma Needleman Wunsch, kejadian stack overflow dapat dihindari.

Penggunaan paralel processing memungkinkan dilakukannya multipairwise alignment dengan waktu yang jauh lebih singkat. Waktu yang diperlukan untuk melakukan alignment berbanding terbalik dengan jumlah node yang digunakan. Dengan arsitektur Hadoop yang scalable secara linear, penambahan kapasitas pemrosesan cukup dilakukan dengan penambahan node saja.

Dengan memanfaatkan HGrid247 sebagai tools data processing, dapat meminimalisasi implementasi, dengan cara memanfaatkan komponen-komponen yang telah ada dan dapat menambahkan komponen yang belum ada jika diperlukan. Antarmuka grafis memudahkanvariasi proses, di mana perubahan flow dan parameter dapat dilakukan dengan relatif lebih mudah.

Dari sisi algoritma, untuk melakukan multipairwise alignment cukup dengan melakukan 1 kali traceback dengan kondisi parameter input untuk gap opening dan gap extension sama. Hal ini dikarenakan traceback dimulai dari nilai optimum, dan nilai tersebut merupakan nilai optimum score alignment, sehingga semua traceback akan memiliki nilai score alignment yang sama.
  • Feb 27 / 2017
  • Comments Off on Seputar Big Data edisi #7
Big Data, Forum Info, Hadoop

Seputar Big Data edisi #7

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu ketiga Februari 2017

Artikel dan berita
  1. Gartner’s 2017 Take on Data Science Software
    Gartner telah merilis Gartner Magic Quadran for Data Science Platforms 2017. Dari sekitar 100 perusahaan yang menjual software data sains, Gartner memilih 16 perussahaan yang memiliki pendapatan tinggi atau pendapatan rendah tetapi pertumbuhan yang tinggi. Setelah mendapat masukan baik dari pelanggan maupun perwakilan perusahaan, Gartner memberikan nilai pada perusahaan dengan kriteria "kelengkapan visi" dan "kemampuan untuk melaksanakan" visi tersebut.
  2. Big Data Opportunties
    Peluang-peluang besar dalam area Big Data pada saat ini yang merupakan hasil perbincangan dengan 22 eksekutif dari 20 perusahaan yang bekerja dalam bidang Big Data.
  3. IBM, Hortonworks tackle big data in Hadoop analytics partnership
    IBM dan Hortonworks telah bermitra untuk menawarkan penggunaan IBM Storage dengan Hadoop. Melalui kemitraan ini, keduanya akan menawarkan Hortonworks Data Platform (HDP) untuk IBM elastis Storage Server (ESS) dan IBM Spectrum Skala. Ini berarti bahwa klien IBM akan dapat menjalankan analisis Hadoop langsung di IBM Storage tanpa perlu melakukan pemisahan antar media penyimpanan khusus untuk analytics.
  4. Machine 4.0: Making your Factory, Production and Maintenance Data Work
    Untuk memanfaatkan potesi Big Data, perusahaan manufaktur harus mampu dengan baik mengintegrasikan dan menghubungkan sumber-sumber data pada sebuah platform terpadu dan menggunakan machine learning untuk mengambil insight, menganalisa dan mendapatkan hasilnya

Tutorial dan pengetahuan teknis

  1. What is a Support Vector Machine, and Why Would I Use it?
    Support Vector Machine saat ini menjadi salah satu algoritma yang popular. Dalam artikel ini dijelaskan bagaimana cara kerja SVM dan beberapa contoh menggunakan Python Scikits libraries.
  2. How To Set Up a Shared Amazon RDS as Your Hive Metastore
    Mulai CDH 5.10 dan selanjutnya, cluster di AWS cloud dapat menggunakan secara bersama-sama sebuah instance RDS persistence sebagai HMS backend database. Hal ini memungkinkan sharing metadata melampaui life cycle cluster, sehingga cluster berikutnya tidak perlu men-generate ulang metadatanya. Berikut ini bagaimana mengkonfigurasi RDS sebagai backend database untuk shared Hive Metastore.
  3. Prophet: How Facebook operationalizes time series forecasting at scale
    Facebook merilis prophet, sebuah open source package untuk R dan Python yang mengimplementasikan metodologi time-series yang digunakan Facebook di production sistem mereka untuk melakukan ‘forecasting at scale’.
  4. Moving from R to Python: The Libraries You Need to Know
    Berikut ini daftar library yang ada di R, dan counterpart-nya di Python, untuk anda yang perlu melakukan migrasi dari R ke Python.

Rilis Produk

  1. Announcing ggraph: A grammar of graphics for relational data
    ggraph, ekstensi dari ggplot2 API untuk mendukung data relasional seperti network dan tree, dirilis di CRAN repository.
  2. Announcing the release of Apache Samza 0.12.0
    Apache Samza adalah kerangka kerja pemrosesan stream terdistribusi, menggunakan Kafka untuk messaging dan Apache Hadoop YARN untuk fault tolerance, processor isolation, keamanan, dan manajemen resource. Release 0.12.0 ini menambahkan beberapa fitur untuk meningkatkan stabilitas, kinerja dan kemudahan penggunaan.

     

    Contributor :

    Tim idbigdata
    always connect to collaborate every innovation 🙂
  • Feb 13 / 2017
  • Comments Off on Seputar Big Data Edisi #5
Apache, Big Data, Forum Info, Hadoop, Social Media

Seputar Big Data Edisi #5

Seputar Big Data edisi #5

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu ke dua bulan Februari 2017

Artikel dan berita

  1. A Very Short History of Artificial Intelligence (AI)
    Sejarah singkat mengenai perkembangan kecerdasan buatan (AI) dari masa ke masa
  2. Chicken Wings or Pizza? Adobe Discusses Super Bowl Insights
    Adobe melakukan penggalian dan analisa pada data mobile ads, sentimen sosial media dan transaksi pembelian untuk mendapatkan tren yang terjadi menjelang pertandingan pada Sunday's Super Bowl antara Atlanta Falcons melawan New England Patriots
  3. 5 Major Big Data Predictions for 2017
    Seputar prediksi area yang akan berkembang dalam penggunaan dan pemanfaatan layanan komputasi awan pada tahun ini 2017.
  4. How to Boost Your Career in Big Data and Analytics
    Saat ini adalah era digital, segala sesuatu dapat menjadi data digital, sehingga peran penting Big Data dan Data Analytics terus meningkat dan tumbuh kedepannya. Ini merupakan kesempatan untuk berkarir di area ini.
  5. How Facebook Is Getting Better at Recognizing Your Photo
    Awal Februari ini Facebook mengupdate fitur pencarian foto menggunakan platform computer vision mereka. Sekarang anda dapat mencari foto di Facebook menggunakan keyword yang mendeskripsikan isi foto.
  6. Big data, financial services and privacy : Should our bankers and insurers be our Facebook friends?
    Bank dan perusahaan asuransi biasanya mendasarkan penilaian mereka pada apa yang dilaporkan oleh customer dan agen mereka. Namun akhir-akhir ini mereka mulai menggunakan sumber-sumber lain yang lebih personal seperti data aplikasi website dan mobile-banking. Bahkan sumber yang tidak konvensional semacam profil media sosial, web browsing, maupun phone location tracker. Dalam sebuah percobaan, FICO, penilai kredit terkemuka di Amerika, menemukan bahwa status Facebook seseorang dapat membantu memprediksi kelayakan kredit seseorang. Saat ini mereka bahkan berusaha mempelajari ekspresi dan nada suara seseorang untuk menentukan resiko kreditnya. Hal ini di samping menjadi peluang, namun juga mengundang beberapa kritik, terutama dari sisi privacy maupun kemungkinan financial exclusion.
  7. How nonprofits use big data to change the world
    Bagaimana organisasi-organisasi nirlaba memanfaatkan data untuk mendukung kegiatan mereka.
  8. Healthcare DATA Integration: The Foundation for Population Health
    Integrasi data dalam pelayanan kesehatan merupakan sebuah hal yang sangat penting, terutama untuk memberikan layanan kesehatan yang terbaik dan terintegrasi untuk masyarakat. Artikel ini membahas mengenai apa saja sumber data yang penting dalam bidang kesehatan, dan apa saja use case yang penting untuk diimplementasikan.

Tutorial dan pengetahuan teknis

  1. Automatically Segmenting Data With Clustering
    Dalam tutorial ini dijelaskan secara singkat mengenai algoritma K-Means Clustering, dan bagaimana mengukur keakuratannya, dan bagaimana memilih segmen yang dihasilkan
  2. You Want Data Science, Now What?
    Langkah-langkah praktis bagi sebuah organisasi yang ingin memulai implementasi data science.
  3. ModernDive: A free introduction to statistics and data science with R
    Sebuah open source textbook mengenai statistik dan data science dalam R. Menjelaskan dengan komprehensif mengenai : menggunakan R untuk mengeksplor dan memvisualisasikan data, menggunakan randomizaation dan simulasi untuk membangun ide inferensial, dan membangun sebuah 'cerita' menggunakan ide-ide tersebut dan menampilkannya ke audiens umum. Menariknya, buku ini sendiri ditulis dalam R, menggunakan package bookdown.
  4. 5 Data Science Books You Should Read in 2017
    5 buku yang perlu dibaca untuk anda yang ingin mengenal atau memperdalam pengetahuan dalam bidang data sains dan big data.
  5. Text mining and word cloud fundamentals in R : 5 simple steps you should know
    Metode text mining memungkinkan kita untuk menyoroti kata kunci yang paling sering digunakan dalam sebuah teks. Untuk menampilkannya dapat digunakan word cloud, juga disebut sebagai text cloud atau tag cloud, yang merupakan representasi visual dari data teks. Artikel ini akan menjelaskan langkah demi langkah cara untuk menghasilkan word cloud dengan menggunakan R.
  6. Fueling the Gold Rush: The Greatest Public Datasets for AI
    Saat ini makin mudah bagi kita untuk membangun sebuah sistem berbasis AI atau machine learning, terutama dengan semakin banyaknya open source tools semacam Tensorflow, Torch, Spark, dan lain sebagainya. Faktor lain yang tidak kalah penting dalam pembuatan sistem berbasis AI adalah data. Berikut ini daftar open dataset dalam berbagai format, yang tidak boleh dilewatkan untuk penggiat dan peminat AI.

Rilis produk

  1. Welcome to Apache Zeppelin 0.7.0
    Rilis Apache Zeppelin 0.7.0 dengan beberapa perbaikan dan penambahan fitur, di antaranya adalah peningkatan multi user, pluggable visualisation, peningkatan dukungan untuk Apache Spark dan security.
  2. The Apache Software Foundation Announces Apache® Ranger™ as a Top-Level Project
    Awal Februari ini Apache Foundation mengumumkan bahwa Apache Ranger ‘lulus’ dari status incubating menjadi sebuah top level project (TLP). Apache Ranger menyediakan cara sederhana dan efektif untuk setting access control dan mengaudit akses data di seluruh Hadoop stack. Salah satu manfaat utama dari Ranger adalah bahwa access control policies dapat dikelola oleh security administrator secara konsisten di seluruh ekosistem Hadoop. Dengan arsitektur plugin yang kuat, Ranger juga memungkinkan komunitas untuk menambahkan sistem baru untuk otorisasi bahkan di luar ekosistem Hadoop, dengan effort yang minimal.
  3. Google is Set to Open Source Google Earth Enterprise
    Google mengumumkan bahwa mereka akan segera membuka seluruh core Google Earth Enterprise (GEE) tools mereka menjadi open source. Rencananya langkah ini akan dilakukan pada bulan maret mendatang.
  4. Apache OpenNLP 1.7.2 released
    Rilis Apache OpenNLP versi 1.2.7. Apache OpenNLP library adalah toolkit berbasis machine learning untuk pengolahan teks bahasa alami. Mendukung task NLP yang paling umum, seperti tokenization, segmentasi kalimat, part-of-speech tagging, named entity extraction, chunking, parsing, dan coreference resolution.
  5.  

    Contributor :

    Tim idbigdata
    always connect to collaborate every innovation 🙂
  • Feb 06 / 2017
  • Comments Off on Seputar Big Data edisi #4
Big Data, Forum Info, Hadoop, Implementation

Seputar Big Data edisi #4

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama terakhir bulan Januari 2017 dan awal Februari 2017

Artikel dan berita
  1. All You Need To Know About Business Models in Digital Transformation
    Dalam istilah yang sangat sederhana, Model Bisnis adalah bagaimana perencaam kita untuk menghasilkan uang dari bisnis yang kita jalani. Sebuah versi halus adalah bagaimana kita menciptakan dan memberikan nilai kepada pelanggan.
  2. Five Ways Data Analytics Will Storm the Stage in 2017
    Telah menjadi sesuatu yang jelas saat ini, bagaimana analisis data mengarahkan pendapatan di bidang e-commerce. Dan perkembangan ini telah memaksa perusahaan e-tailers dan e-commerce untuk mempekerjakan lebih banyak data scientist dalam rangka untuk lebih memahami bagaimana faktor pelanggan berdampak kepada pendapatan dan penjualan.
  3. Stream Processing Myths Debunked
    Stream processing menjadi bagian yang penting dalam sebuah sistem big data, dan semakin banyak aplikasi dan platform yang mendukungnya. Meskipun demikian, masih banyak miskonsepsi yang terjadi terkait dengan stream processing. Dalam artikel ini para ahli dari data Artisans mengupas dan membongkar 6 mitos dan miskonsepsi mengenai stream processing.
  4. How Madden Got So Good at Predicting Super Bowl Winners
    Bagaimana Madden, sebuah videogame, dapat memanfaatkan data untuk memprediksikan pemenang superbowl, perhelatan olahraga terbesar di Amerika, hingga 9 dari 13 kali.

Tutorial dan pengetahuan teknis

  1. The Top Predictive Analytics Pitfalls to Avoid
    Tidak dapat dipungkiri lagi bahwa predictive modelling dan machine learning memberikan kontribusi signifikan untuk bisnis, namun keduanya sangat sensitif terhadap data dan perubahan di dalamnya, sehingga pemilihan teknik yang tepat dan menghindari kesalahan dan perangkap dalam membangun model data sains. Berikut ini beberapa perangkap utama yang perlu dihindari.
  2. How to set up a Twitter bot using R
    Dalam rangka dirilisnya package R ke 10.000 di CRAN, eoda menjalankan akun Twitter yang otomatis menampilkan jumlah package yang tersedia di CRAN sampai package ke 10 ribu tercapai pada tanggal 28 Januari 2017. Artikel ini menjelaskan mengenai cara set up account Twitter tersebut dengan R script.
  3. Journey Science: Combining 18 Data Sources + 1 Billion Interactions to take UX to The Next Level
    Journey Science, yang menyatukan data dari berbagai aktifitas pelanggan, telah menjadi bagian penting bagi industri telekomunikasi. Data tersebut dapat digunakan untuk meningkatkan customer experience dan retention. Dengan menggunakan insight yang didapat dari customer journey analytics, bisnis telekomunikasi dapat mengukur user experience dengan lebih baik, dan membuat keputusan yang tepat untuk meningkatkannya. Mulai dari melakukan tindakan proaktif untuk kepuasan pelanggan, namun juga untuk memprediksi dan mengantisipasi kegagalan yang mungkin terjadi di masa datang. Berikut ini sekilas mengenai bagaimana memanfaatkan customer journey untuk meningkatkan pelayanan dan kepuasan pelanggan.
  4. Performance comparison of different file formats and storage engines in the Hadoop ecosystem
    CERN telah mempublikasikan perbandingan kinerja Apache Avro, Apache Parquet, Apache HBase dan Apache Kudu. Ujicoba ini untuk mengevaluasi efficiency, ingestion performance, analytic scans and random data lookup pada data layanan CERN Hadoop.
  5. Working with UDFs in Apache Spark
    Dalam tulisan ini, akan dijelaskan contoh yang sederhana pembuatan UDF dan UDAF pada Apache Spark menggunakan Python, Java dan Scala
  6. Perfecting Lambda Architecture with Oracle Data Integrator (and Kafka / MapR Streams)
    Artikel yang menjelaskan konfogurasi pada Oracle Data Integrator menggunakan Apache Kafka/MapR Stream untuk menangkap perubahan yang terjadi pada MySQL.

Rilis produk

  1. Google : Using Machine Learning to predict parking difficulty
    Saat ini sebagian besar waktu mengemudi dihabiskan dalam kemacetan atau berputar-putar mencari tempat parkir. Salah satu tujuan produk-produk semacam Google Maps dan Waze adalah membantu pengguna kendaraan untuk mengemudi dengan lebih mudah dan efisien. Namun sampai saat ini, belum ada tool yang khusus mengatasi permasalahan parkir. Minggu lalu, Google merilis fitur baru untuk Android Google Map, yang menawarkan prediksi kondisi perparkiran di sekitar tempat tujuan anda, sehingga anda dapat mengantisipasinya dengan lebih baik. Fitur ini memanfaatkan kombinasi antara crowdsourcing dan machine learning. Saat ini fitur tersebut baru terdapat di di 25 kota di Amerika Serikat saja.
  2. Apache Atlas 0.7.1-incubating released
    Apache Atlas 0.7.1-incubating telah dirilis. Ada banyak perbaikan bugs dan beberapa peningkatan yang bersifat minor.
  3. Cloudera Enterprise 5.10 is Now Available
    Cloudera telah mengumumkan bahwa Cloudera Enterprise 5.10 telah dirilis dengan support GA untuk Apache Kudu, peningkatan kinerja pada cloud, peningkatan pada pengelolaan data dalam Amazon S3, dan banyak lagi.
  4. Announcing The Latest Hortonworks Data Cloud Release !
    Hortonworks mengumumkan rilis baru dari Hortonworks Data Cloud for AWS. Versi 1.11 ini terus mendorong untuk membuat pengolahan data menjadi mudah dan berbiaya efektif dalam komputasi awan.
  5. Announcing Data Collector ver 2.3.0.0
    StreamSets Data Collector versi 2.3.0.0 telah dirilis. Fokus utama dari rilis kali ini adalah mulithreaded pipelines, dukungan terhadap multitable copy, MongoDB change data capture, and HTTP API untuk Elasticsearch
  6. [ANNOUNCE] Apache Bahir 2.0.2
    Apache Bahir, tools yang menyediakan ekstensi dari Apache Spark, merilis versi 2.0.2

 

Contributor :

Tim idbigdata
always connect to collaborate every innovation 🙂
  • Feb 02 / 2017
  • Comments Off on Meetup #12 : Sinergi IDBigData, ITERA dan AIDI
Big Data, Forum Info, Hadoop, Implementation, Komunitas

Meetup #12 : Sinergi IDBigData, ITERA dan AIDI

Menggandeng ITERA (Institut Teknologi Sumatra) dan AIDI (Asosiasi Ilmuwan Data Indonesia, IDBigData menggelar meetup yang pertama di tahun 2017 di kampus ITERA, Lampung.

Meetup dibuka oleh Wakil Rektor I ITERA, Prof. Dr.-Ing. Mitra Djamal, dan menampilkan topik-topik menarik dan terkini yang terkait dengan big data.

Pembicara yang tampil di antaranya adalah Dr. Masayu Leylia Khodra dari ITB, memaparkan mengenai "Text Mining: Peringkasan Teks Bahasa Indonesia". Dalam era di mana pertumbuhan data dan informasi terjadi secara luar biasa, muncul fenomena yang biasa disebut "Information Overload", atau kebanjiran informasi. Orang tidak mungkin lagi membaca semua informasi yang ditemui. Untuk mengatasi hal ini, peringkasan teks menjadi sebuah proses yang penting dan sangat memudahkan bagi manusia untuk menyerap sebanyak mungkin informasi dalam waktu yang terbatas.

Pembicara lain adalah Andry Alamsyah, S.Si, M.Sc, Chairman dari Asosiasi Ilmuwan Data Indonesia (AIDI), menjelaskan mengenai Data Sains dalam perspektif bisnis. Dalam paparannya Andry menyampaikan banyak sekali use case yang menarik yang berkaitan dengan pengolahan data dan opportunity yang dapat digali dan diciptakan dari data.

Tampil pula Ir. Beno K Pradekso MSc.EE, CEO SOLUSI247, membawa tema "Big Data untuk Kedaulatan Data Indonesia", dan tidak ketinggalan pula, Sigit Prasetyo, ketua IDBigData, yang mengajak peserta untuk berkenalan dengan YAVA, distro Hadoop buatan anak bangsa.

Meetup #12 ini dihadiri oleh 89 peserta, yang berasal dari kalangan universitas, pemerintahan dan industri, di antaranya dari ITERA, Unila, Bapeda Lampung dan Bank Lampung.

Selain seminar singkat, di hari ke 2 diadakan pula workshop yang merupakan kerja sama dengan Lab247, yang memberikan kesempatan pada para peserta untuk mendapatkan hands on experience dengan big data tools dan platform seperti Chanthel (distributed document management), dan HGrid (big data engineering).

Untuk rekan-rekan yang belum berkesempatan mengikutinya, rekaman meetup ke 12 ini dapat disaksikan melalui channel IDBigData.

Meetup ke 13 rencananya akan dilaksanakan pada bulan Februari 2017, bekerja sama dengan Universitas Indonesia.

 

Contributor :

Tim idbigdata
always connect to collaborate every innovation 🙂
  • Jan 09 / 2017
  • Comments Off on Seputar Big Data edisi #1
Apache, Big Data, Hadoop, Implementation, IoT, Social Media, Storage, Storm, Uncategorized

Seputar Big Data edisi #1

Seputar Big Data edisi #1

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu pertama bulan Januari 2017.

Artikel dan berita

  1. datafloq.com - 4 Industries Leading the Way in IoT Integration
    Perkembangan Internet of Thing saat ini sangat pesat. Diprediksi dalam waktu dekat, hampir semua perangkat akan terkoneksi satu sama lainnya untuk membuat hidup kita lebih mudah. Ada 4 industri yang diperkirakan akan mengambil manfaat dari IoT.
  2. AWS Big Data Blog - Decreasing Game Churn: How Upopa used ironSource Atom and Amazon ML to Engage Users
    Apakah pernah mengalami kesulitan untuk menjaga loyalitas pengguna supaya tidak meninggalkan game atau aplikasi, setelah bersusah untuk menarik pengguna? Upopa, sebuah studio game yang memanfaatkan machine learning untuk memprediksi perilaku para pengguna game
  3. oreilly.com - 7 AI trends to watch in 2017
    Pada tahun 2016 lalu, banyak terjadi inovasi-inovasi yang luar biasa, banyak investasi di bidang Artificial Intelligent baik pada perusahaan besar maupun startup. Bagaimana dengan tahun 2017?
  4. DZone - Understanding Machine Learning
    Apa sebetulnya Machine Learning? Sebuah penjelasan mengenai machine learning, cara kerjanya dan bagaimana penggunaannya.
  5. Yahoo Finance - Hadoop Big Data Analytics Market Worth 40.69 Billion USD by 2021
    Menurut sebuah laporan market research yang dipublikasikan oleh MarketsandMarkets, pasar big data analytics akan berkembang dari USD 6.71 miliar di tahun 2016 akan menjadi USD 40.69 miliar di tahun 2021.
  6. insideBIGDATA - Loggly Introduces Gamut™ Search for Massive-Scale Log Analysis
    Loggly, perusahaan di balik, kelas enterprise layanan manajemen log berbasis cloud, memperkenalkan Gamut ™ Search, teknologi analisa log yang khusus dirancang untuk merespon langsung pencarian pada data bervolume sangat besar dan dalam periode waktu yang lama.
  7. BrightPlanet - Social Media Data – Instagram Pulls Back on API Access
    Program pemantauan sosial media perlu melakukan perubahan dan terbuka untuk opsi lain pada data open-source. Seperti Instagram melakukan beberapa perubahan akses API, dan akses ke data-data akan dibatasi.

 

Tutorial dan pengetahuan teknis

  1. ZDNet - Hands-on with Azure Data Lake: How to get productive fast
    Microsoft Azure Data Lake saat ini telah tersedia secara umum, tapi apa fungsinya, dan bagaimana cara kerjanya? Artikel berikut merupakan overview seputar tools dan kemampuan layanan, untuk membantu memahami dan meningkatkan produktifitas.
  2. KDnuggets - Internet of Things Tutorial: WSN and RFID – The Forerunners
    Wireless Sensor Network dan RFID adalah kunci utama untuk memahami konsep-konsep yang lebih kompleks dari IoT dan teknologinya.
  3. KDnuggets - Internet of Things Tutorial: WSN and RFID – The Forerunners
    Wireless Sensor Network dan RFID adalah kunci utama untuk memahami konsep-konsep yang lebih kompleks dari IoT dan teknologinya.
  4. IBM Big Data Hub - How to build an all-purpose big data engine with Hadoop and Spark
    Beberapa organisasi sering salah dalam mengoptimalkan penggunakan Hadoop dan Spark bersama-sama, terutama karena masalah kompleksitas. Padalah kombinasi keduanya memungkinkan untuk analisa data yang lebih luas dan mendukung use case yang lebih banyak.
  5. DZone Big Data - Kafka Avro Scala Example
    Tutorial mengenai cara menulis dan membaca pesan dalam format Avro dari/ke Kafka. Bagaimana cara menghasilkan pesan untuk dikodekan menggunakan Avro, cara mengirim pesan tersebut ke Kafka, dan bagaimana untuk mengkonsumsi dengan konsumen dan akhirnya bagaimana untuk dibaca dan digunakan.
  6. IBM Hadoop Dev - Enable Snappy Compression for Improved Performance in Big SQL and Hive
    Ketika loading data ke dalam tabel Parquet, Big SQL akan menggunakan kompresi Snappy secara default. Pada Hive, secara default kompresi tidak diaktifkan, akibatnya tabel bisa secara signifikan menjadi lebih besar
  7. KDnuggets - Generative Adversarial Networks – Hot Topic in Machine Learning
    Apa Generative Adversarial Networks (GAN)? Ilustratif sederhana dari GAN adalah dengan mengambil contoh seperti memprediksi frame berikutnya dalam urutan video atau memprediksi kata berikutnya saat mengetik di google search.
  8. MapR - Monitoring Real-Time Uber Data Using Spark Machine Learning, Streaming, and the Kafka API (Part 2)
    Ini merupakan bagian kedua dari tutorial untuk membuat pemantauan secara realtime mobil-mobil yang digunakan oleh Uber. Tutorial ini menggunakan algoritma k-means pada Apache Spark untuk melakukan pengelompokan data secara realtime
  9. LinkedIn Engineering - Asynchronous Processing and Multithreading in Apache Samza, Part I: Design and Architecture
    Apache Samza terus digunakan oleh LinkedIn dan perusahaan lain untuk melakukan pemrosesan stream. Pada sistem pengolahan stream lainnya menyederhanakan model pemrograman untuk menjadi synchronous and stream/event-based, sedangkan Samza mengembangkan model asynchronous.
  10. MapR - Processing Image Documents on MapR at Scale
    Sebuah tutorial dari MapR untuk pemrosesan gambar dengan menggunakan Apache Spark dan Tesseract OCR engine

 

Rilis produk

  1. GitHub - kafka-utilities
    Sebuah project yang dishare oleh wushujames di hithub.com yang memberikan script untuk menganalisa keadaan klaster Kafka, untuk menentukan broker yang dapat digunakan untuk partisi under-replicated
  2. GitHub - burry
    Burry adalah backup recovery tool yang digunakan untuk membackup dan mengembalikan service pada Zookeepr dan etcd. Tools ini dibuat oleh Michael Hausenblas dan dapat diunduh pada github.com

 

Contributor :

Tim idbigdata
always connect to collaborate every innovation 🙂
  • Oct 10 / 2016
  • Comments Off on Indonesia Menggelar “Karpet Merah” untuk Data
Big Data, Forum Info, Hadoop, Komunitas, Uncategorized

Indonesia Menggelar “Karpet Merah” untuk Data

Pemerintah Indonesia terus membangun infrastruktur untuk penggunaan transaksi data di Indonesia. Di antaranya adalah program menghubungkan kota-kota dan kabupaten di seluruh Indonesia dengan backbone fiber optik yang selesai pada akhir 2015, refarming 1800 MHz yang juga selesai pada akhir 2015, disusul dengan 2,1 dan 2,3 GHz untuk memasuki 4G dan nantinya 5G. Semua itu dilakukan untuk menyongsong penggunaan data dan teknologi big data di Indonesia.

Demikian disampaikan oleh Prof. Dr.-Ing. Ir. Kalamullah Ramli, M.Eng. selaku Direktur Jenderal Pos dan Penyelenggaraan Informatika Kementerian Komunikasi dan Informatika pada Konferensi Big Data Indonesia 2015 yang lalu.

Beberapa poin penting yang disampaikan pada kesempatan tersebut yaitu:

  • Big data merupakan peluang bagi seluruh pelaku usaha, pemerintah, dan masyarakat dalam mengoptimalkan strategi mencapai sasaran yang lebih efisien, efektif dan terarah.
  • Sumber daya big data nasional yang tercipta dalam NKRI harus diproteksi dan dioptimalkan untuk kepentingan nasional dan khususnya digunakan untuk menyediakan layanan big data dengan kemandirian.
  • Pemerintah telah membangun kebijakan dan regulasi yang mendorong terciptanya ekosistem big data di indonesia dengan baik. Kemkominfo fokus pada pengembangan dukungan infrastruktur dan platform untuk penyediaan layanan big data.
  • Semua instansi terkait harus berperan dalam pengembangan ekosistem big data, khususnya pada pengembangan human capital dari sisi kemampuan analitikal
  • Penyelenggara telko dapat menyediakan layanan big data untuk mengetahui subscriber behavior dan subscriber demographic untuk kepentingan pengembangan usaha oleh berbagai korporasi di indonesia serta pemerintah untuk mencapai pertumbuhan yang lebih dan akhirnya bermuara pada pertumbuhan ekonomi nasional.

Konferensi Big Data Indonesia kembali akan digelar pada tanggal 7-8 Desember 2016 di Jakarta, dan tentunya akan menampilkan pembicara dan materi yang sangat relevan dengan perkembangan big data di Indonesia.

Contributor :

Tim idbigdata
always connect to collaborate every innovation 🙂
  • Aug 18 / 2016
  • Comments Off on Spark 2.0.0 – Kecepatan dan Kemudahan dalam Kemasan Simple
Apache, Hadoop, Komunitas, Spark

Spark 2.0.0 – Kecepatan dan Kemudahan dalam Kemasan Simple

Databrick akhirnya mengumumkan release Spark 2.0.0 pada 26 Juli 2016. Dua bulan sebelumnya mereka melansir preview-release untuk memberikan kesempatan para penggunanya bereksperimen dan memberikan feedback mengenai fitur-fitur baru Spark.

Release Spark versi 2.0.0 merupakan momen yang ditunggu-tunggu karena menjanjikan banyak kemajuan di sisi fitur dan performance, dan juga mencakup 2500 patches dari 300 lebih kontributor.

Beberapa hal yang dijanjikan oleh Spark 2.0.0 adalah :

Lebih mudah : Support ANSI SQL dan API yang disederhanakan. Spark berfokus pada dua hal : a) dukungan ANSI SQL dan b) penyederhanaan API. Beberapa hal yang dilakukan pada sisi programming API adalah: menggabungkan API developer dalam library Spark, seperti misalnya antara DataFrames dan Datasets, serta SQLContext dan HiveContext. API berbasis dataFrame dengan “pipeline” API-nya akan menjadi package utama dari API machine learning. Meskipun library yang lama tetap dipertahankan untuk backward compatibility, fokus di masa depan akan lebih pada pengembangan API berbasis DataFrame. User dapat menyimpan dan me-load pipeline dan model machine learning dalam berbagai bahasa pemrograman yang disupport oleh Spark. Support tambahan untuk R, yaitu : Algoritma terdistribusi untuk Generalized Linear Models (GLM), Naive Bayes, Survival Regression, and K-Means Mendukung UDF (user defined function) untuk dapat dijalankan di level partisi (dapply & gapply) serta tuning hyper-parameter (lapply)

Lebih cepat : peningkatan kecepatan 5 sampai 10 kali daripada Spark 1.6 untuk beberapa operator, sebagai hasil dari project Tungsten Fase 2 yang mencakup whole stage code generation dan optimisasi code Catalyst.

Lebih cerdas : Streaming terstruktur, yaitu menggabungkan berbagai macam komponen komputasi Spark yang mendukung komputasi streaming untuk menghasilkan aplikasi yang berkesinambungan. Selama ini pemrosesan streaming sering dinilai sebagai titik lemah dari Spark, dan Spark 2.0.0 bertujuan untuk mengatasi hal ini. Ada beberapa perbaikan yang dilakukan dalam Spark 2.0, di antaranya:
  • Intergrasi streaming API dengan batch job
  • Interaksi transaksional dengan storage system
  • Integrasi dengan komponen komputasi lain melalui Spark SQL, penggabungan dengan data statis, dan library yang sudah menggunakan DataFrame. Target selanjutnya adalah integrasi dengan MLlib dan library-library lain.

Contributor :


M. Urfah
Penyuka kopi dan pasta (bukan copy paste) yang sangat hobi makan nasi goreng. Telah berkecimpung di bidang data processing dan data warehousing selama 12 tahun. Salah satu obsesi yang belum terpenuhi saat ini adalah menjadi kontributor aktif di forum idBigdata.

  • Mar 02 / 2016
  • Comments Off on Apache Arrow – in-memory columnar data layer
Apache, Big Data, Forum Info, Hadoop

Apache Arrow – in-memory columnar data layer

Pada tanggal 17 Februari 2016 lalu, Apache Software Foundation mengumumkan Apache Arrow sebagai top-level project tanpa melalui masa inkubasi yang panjang. Apache Arrow semula merupakan pengembangan dari Apache Drill, dibangun atas kolaborasi beberapa project open source unggulan lainnya dan bertujuan untuk menjadi standar de-facto bagi pemrosesan data in-memory yang tersusun secara columnar. Proyek-proyek Big Data yang telah bergabung dalam pengembangan Apache Arrow adalah Calcite, Cassandra, Drill, Hadoop, HBase, Impala, Kudu (incubating), Parquet, Phoenix, Spark, Storm, Pandas dan Ibis.

Apache Arrow bukan merupakan sebuah engine ataupun sistem penyimpanan. Ia adalah sebuah format dan algoritma untuk bekerja secara hirarkis, in-memory dan columnar serta mendukung sejumlah bahasa pemrograman yang dapat bekerja diatasnya.

“Data dalam memori yang tersusun secara columnar memungkinkan sistem dan aplikasi memproses data pada kecepatan maksimum dari hardware” ujar Todd Lipcon, pendiri Apache Kudu dan anggota komite manajemen Apache Arrow Project.

Pada banyak proses pengolahan data, 70-80% siklus CPU dihabiskan untuk proses serialisasi dan deserialisasi data antar proses. Arrow mengatasi masalah ini dengan memungkinkan adanya sharing data antar sistem dan proses tanpa melalui proses serialisasi, deserialisasi atau penggandaan memory. Penggunaan Apache Arrow diklaim mampu mempercepat proses hingga 100 kali.

apachearrow_01.png apachearrow_02.png

Arrow juga telah mendukung data yang kompleks dengan skema dinamis. Contohnya, Arrow mampu menangani data JSON yang umumnya digunakan pada proses IoT, aplikasi modern dan log file. Implementasinya juga sedang dikembangkan untuk beberapa bahasa pemrograman termasuk java, c++ dan python untuk memungkinkan interoperabilitas solusi big data yg lebih besar.

Software apache arrow sudah rilis dengan menggunakan lisensi Apache v2.0 dan untuk mengunduh software, dokumentasi dan cara bergabung dengan Apache Arrow project silahkan mengunjungi http://arrow.apache.org/

Contributor :


Sigit Prasetyo
Seorang pengembara dunia maya, sangat suka mengeksplorasi dan menelusuri tautan demi tautan dalam internet untuk memperoleh hal-hal menarik. Saat ini sedang berusaha mengasah ilmu googling. Memiliki kegemaran memancing walaupun saat ini lebih sering memancing di kantor, terutama memancing emosi.

Tertarik dengan Big Data beserta ekosistemnya? Gabung