:::: MENU ::::

Seputar Big Data edisi #15

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu 3 bulan mei 2017

Artikel dan berita

  1. How Traditional Industries Are Using Machine Learning and Deep Learning to Gain Strategic Business Insights
    Pengaruh AI di bidang industri tidak bisa lagi dianggap trend sesaat belaka. Bagaimana langkah industri dalam mengadopsi AI ke dalam proses bisnis dan pengambilan keputusan mereka? Beberapa use case nyata disajikan dalam artikel ini.
  2. How Artificial Intelligence will Transform IT Operations and DevOps
    Penerapan big data membawa tantangan yang besar bagi IT Operation dan DevOps. Di antaranya adalah bagaimana mereka harus bisa menemukan akar masalah, bahkan mengantisipasinya sedini mungkin, di tengah lautan data yang begitu besar. Artikel ini menjelaskan bagaimana AI menjadi salah satu solusi yang akan mengubah ‘wajah’ Operasional IT dan DevOps. Salah satu konsep yang sering disebut adalah ‘Cognitive Insights’, yaitu menggunakan machine learning untuk mengolah log dan data dari berbagai sumber untuk menemukan solusi bagi masalah-masalah yang dihadapi DevOps dan Operasional IT.
  3. Neural Network-Generated Illustrations in Allo
    Sebuah fitur menarik yang diperkenalkan Google di aplikasi Allo, yang mengubah foto selfie menjadi stiker ilustrasi, menggunakan kombinasi antara neural network dan hasil karya seniman.
  4. Using Twitter as a data source: an overview of social media research tools (updated for 2017)
    Tinjauan dan pembahasan singkat mengenai metode dan tools yang dapat digunakan oleh ilmuwan bidang sosial untuk menganalisis data sosial media. List yang sangat bermanfaat jika anda ingin melakukan penelitian yang memanfaatkan data sosial media.
  5. NHS gave DeepMind patient records on an ‘inappropriate legal basis’
    Sebuah pelajaran berharga dari dugaan pelanggaran privacy dalam kasus data sharing antara NHS dengan DeepMind. Mengingatkan kita kepada pentingnya memahami regulasi yang harus dipenuhi apa saja yang harus diantisipasi, dan batasan apa yang harus ditaati dalam pemanfaatan data-data sensitif dan pribadi untuk keperluan analisis dan machine learning.
  6. Four Lessons In The Adoption Of Machine Learning In Health Care
    AI dan machine learning berpotensi sangat besar untuk perbaikan kualitas pelayanan kesehatan, namun mengapa saat ini pemanfaatannya di dunia kesehatan masih sangat terbatas? Berikut ini beberapa poin penting yang perlu diperhatikan, dari mulai jenis task apa yang paling sesuai, bagaimana membangun kepercayaan dan dukungan dari tenaga medis sendiri, bagaimana memilih vendor, dan perubahan apa yang perlu dilakukan dari sisi layanan kesehatan agar dapat memperoleh manfaat sebesar-besarnya dari teknologi ini.
  7. Special Ops battle with ‘big data’
    Komandan Komando Operasi Khusus Amerika Serikat (SOCOM) berbicara mengenai pentingnya Big Data, dan apa yang dilakukan untuk memanfaatkan data bagi operasi-operasi intelelejen, terutama yang bersifat kritikal.
  8. Big Data: The Ultimate in Customer Tracking
    Big Data identik dengan pelacakan dan pengumpulan data pengguna, dari setiap titik transaksi, profil WiFi, situs yang dikunjungi, dan lain sebagainya. Hal ini menimbulkan kekhawatiran bahwa Big Data identik dengan ‘Big Brother’. Namun sebetulnya Big Data lebih dekat perbandingannya dengan ‘Moneyball’, yaitu sebuah film mengenai pemanfaatan big data untuk memenangkan kompetisi baseball terbesar di dunia, Superbowl.

Tutorial dan pengetahuan teknis

  1. Event-time Aggregation and Watermarking in Apache Spark’s Structured Streaming
    Artikel ini merupakan seri ke 4 dari serangkaian artikel mengenai pemrosesan yang kompleks terhadap data streaming menggunakan Spark. Di sini dijelaskan mengenai bagaimana meng-agregasi data real time dengan Structured Streaming, dan mengenai bagaimana menangani event yang terlambat masuk dengan mekanisme Watermarking.
  2. Detecting Abuse at Scale: Locality Sensitive Hashing at Uber Engineering
    Menjelaskan mengenai Locality Sensitive Hashing, yaitu algoritma near neighbor search dalam ruang dimensi tinggi. Uber ddan Databrick bekerjasama dalam kontribusi implementasi LSH ke dalam Spark. Uber menggunakan LSH terutama untuk medeteksi pengemudi yang curang berdasar data perjalanan. Dijelaskan juga apa motivasi Uber menggunakan LSH di atas Spark, bagaimana penerapannya, dan apa rencana pengembangan ke depan.
  3. Home advantages and wanderlust
    Menganalisa data Premier League, untuk menentukan kesebelasan mana prosentase poinnya paling banyak didapat dari pertandingan kandang. Analisis dilakukan menggunakan R, yaitu package engsoccerdata. Dalam artikel ini ditunjukkan bagaimana teknik-teknik analisis dan visualisasi data dapat menjadi sesuatu yang menarik, apalagi jika dipadukan dengan data yang sesuai dengan bidang yang digemari.
  4. hive-druid-part-1-3/">Ultra-fast OLAP Analytics with Apache Hive and Druid – Part 1 of 3
    Bagian pertama dari 3 seri tulisan mengenai bagaimana melakukan OLAP analisis super cepat menggunakan Apache Hive dan Druid. Druid adalah data store terdistribusi berorientasi kolom, yang sesuai untuk low latency analytics.
  5. How-to: Backup and disaster recovery for Apache Solr (part I)
    Satu lagi artikel yang menjadi bagian dari serial, kali ini membahas mengenai backup dan disaster recovery Apache Solr. Artikel ini menjelaskan dasar-dasar backup dan recovery Solr dengan cukup detail dan jelas.
  6. Using 'Faked' Data is Key to Allaying Big Data Privacy Concerns
    Salah satu issue terbesar dalam penggunaan data untuk machine learning adalah privacy. Data yang digunakan dalam proses learning seringkali mengandung informasi pribadi yang sensitif, bahkan ketika data tersebut sudah di-anonimisasi. Untuk mengatasi permasalahan MIT membuat sebuah gebrakan, yaitu sistem machine learning yang men-generate ‘data sintetis’ berdasar model data asli. Data sintetis initidak mengandung informasi asli apapun, namun tetap dapat ‘berperilaku’ serupa dengan data asli di dalam analisis dan stress tes, sehingga dapat menjadi pengganti ideal bagi data asli. Algoritma yang digunakan disebut dengan “recursive conditional parameter aggregation”.
  7. An Impatient Start With the Apache Ignite Machine Learning Grid
    Baru-baru ini Apache Ignite merilis in memory machine learning grid mereka, dalam tahap beta version. Rilis beta ini dapat melakukan operasi vektor lokal dan terdistribusi, dekomposisi, dan matriks. Artikel menunjukkan secara singkat dan padat, bagaimana mendownload Apache Ignite 2.0 release, kemudian mem-build dan mengeksekusi contoh programnya.
  8. Balancing Bias and Variance to Control Errors in Machine Learning
    Di dunia machine learning, akurasi adalah hal utama. Berbagai cara dilakukan untuk membangun model seakurat mungkin, dengan cara menyesuaikan parameter-parameternya. Artikel ini mengupas dengan cukup detail mengenai apa yang harus diperhatikan untuk meminimalisir error dengan mengontrol bias dan variansi.
  9. Deep Learning – Past, Present, and Future
    Perjalanan perkembangan deep learning dari masa ke masa.

Rilis produk

  1. The Apache Software Foundation Announces Apache® Samza™ v0.13
    Samza adalah framework pemrosesan Big Data stream terdistribusi, yang saat ini digunakan oleh Intuit, LinkedIn, Netflix, Optimizely, Redfin, Uber dan lain-lain.

    Rilis v0.13 mencakup :
    • Higher level API yang dapat merepresentasikan pipeline pemrosesan stream yang kompleks dengan lebih ringkas
    • Support untuk menjalankan aplikasi Samza sebagai lightweight embedded library tanpa mengandalkan YARN
    • Deployment yang lebih fleksibel
    • Peningkatan monitoring dan deteksi kegagalan menggunakan mekanisme heart-beating yang built-in
    • Integrasi yang lebih baik dengan framework manajemen cluster yang lain
    • Beberapa bug-fixes yang meningkatkan keandalan, stabilitas, dan kekuatan pemrosesan data
  2. Build Intelligent Apps Faster with Visual Studio and the Data Science Workload
    Versi terbaru Visual Studio 2017 memiliki built-in support untuk pemrograman R dan Python. Pada versi terdahulu, dukungan untuk bahasa-bahasa ini telah tersedia melalui RTVS dan PTVS add-in, namun dengan Data Science Workloads support R dan Python tidak lagi memerlukan add-in. Fitur ini tersedia di semua edisi, termasuk Visual Studio Community 2017 yang bisa anda download secara gratis.
  3. Apache Arrow 0.3.0
    Rilis 0.3.0 ini mencakup 306 JIRA yang diresolve dari 23 kontributor.
Tertarik dengan Big Data beserta ekosistemnya? Gabung