:::: MENU ::::

Seputar Big Data Edisi #13

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu pertama bulan Mei 2017.

Artikel dan berita

  1. Data Driven: 5 Ways Automakers Use Big Data to Improve Their Products
    Di era data-driven ini big data memegang peran yang semakin penting dalam bisnis otomotif, bahkan mcKinsey memperkirakan, data-data otomotif akan bernilai 450 to 750 milyar dolar di tahun 2030. Apa saja yang dilakukan produsen otomotif dalam pemanfaatan big data untuk memperbaiki produk mereka?
  2. How Companies Say They’re Using Big Data
    Hasil survey terhadap eksekutif perusahaan-perusahaan Fortune 1000 mengenai bagaimana mereka mengimplementasikan dan menggunakan big data.
  3. The Big Data Market Will account for over Billion by the end of 2020
    Investasi di bidang yang terkait big data semakin meningkat di seluruh dunia. SNS Research memprakirakan bahwa investasi big data akan mencapai lebih dari 57 miliar US$ untuk tahun 2017, dan 76 miliar US$ pada 2020.
  4. PSU, Eversource to use big data to better predict storms that cause power outages
    Kerja sama antara Plymouth State University dan Eversource dalam pemanfaatan big data untuk memprediksikan cuaca, dalam usaha mengurangi padamnya listrik. Beberapa hal yang menjadi perhatian adalah suhu, curah hujan, dan kemungkinan adanya badai, bahkan jenis pepohonan apakah yang mungkin menjadi potensi masalah untuk jalur listrik jika terjadi badai.
  5. The new paradigm for big data governance
    Data saintis menggunakan sandbox untuk mengeksplorasi data dan menggali insight. Meskipun penggunaan sandbox dapat meningkatkan produktivitas, namun memindahkannya ke production environment bisa menjadi masalah. Penggunaan bahasa pemrograman dan struktur data yang masih relatif asing untuk dunia IT pun memperumit permasalahan. Oleh karenanya, perlu penerapan data governance dalam big data sains. Akan tetapi, berbeda dengan data governance pada umumnya, big data analytics memiliki karakteristik dan kebutuhan tersendiri.
  6. The new paradigm for big data governance
    Data saintis menggunakan sandbox untuk mengeksplorasi data dan menggali insight. Meskipun penggunaan sandbox dapat meningkatkan produktivitas, namun memindahkannya ke production environment bisa menjadi masalah. Penggunaan bahasa pemrograman dan struktur data yang masih relatif asing untuk dunia IT pun memperumit permasalahan. Oleh karenanya, perlu penerapan data governance dalam big data sains. Akan tetapi, berbeda dengan data governance pada umumnya, big data analytics memiliki karakteristik dan kebutuhan tersendiri.
  7. Making the Most of Big Data in Biomedicine
    The Biomedical Big Data to Knowledge Training (B2D2K), sebuah program untuk melatih ilmuwan di bidang biomedis dalam penggunaan big data, diluncurkan di Amerika. Program berbiaya 2.4 juta US$ ini adalah kerjasama antara Geisinger Health System, Penn State University dan Penn State Hershey, didanai oleh National Library of Medicine, National Institutes of Health sebesar 1.4 juta US$, dan Penn State sebesar 1 juta US$.
  8. Big data research awards show the potential of international collaboration
    The Trans-Atlantic Platform, sebuah konsorsium organisasi-organisasi ilmu sosial dan kemanusiaan dari Amerika Utara, Amerika Selatan dan Eropa, mengumumkan pemenang kompetisi riset big data yang diberi nama Digging into Data Challenge. Kompetisi yang telah memasuki putaran ke empat ini menunjukkan besarnya potensi kerjasama internasional dalam bidang big data.
  9. In a world of bots, AI and big data, how can employees and businesses survive?
    Revolusi industri keempat, yang ditandai dengan ledakan digital di dunia ekonomi membawa tantangan tersendiri bagi bisnis. AI, bot dan big data merambah semakin luas ke setiap segi kehidupan. Bagaimana bisnis dan tenaga kerja dapat bertahan menghadapi gelombang digitalisasi dan otomasi?

Tutorial dan pengetahuan teknis

  1. Hail: Scalable Genomics Analysis with Apache Spark
    Salah satu tantangan terbesar dalam analisis data genomics adalah skalabilitas. Ukuran data genome sangatlah besar, bahkan dalam paper “Big Data: Astronomical or Genomical?” diperkirakan bahwa “pada tahun 2025 genome manusia yang disekuens dapat mencapai antara 100 juta sampai 2 milyar”, membutuhkan sekitar 2-40 exabyte storage. Permasalahan utama pemrosesan data besar adalah performance. Hail muncul sebagai salah satu solusi analisis genome yang memanfaatkan keunggulan kinerja dan skalabilitas Apache Spark.
  2. Building and Exploring a Map of Reddit with Python
    Memetakan dan menganalisis 10.000 subreddit paling populer di Reddit, dalam Python.
  3. Machine Learning Classification with C5.0 Decision Tree Algorithm
    Tutorial klasifikasi menggunakan algoritma c5.0 decision tree, mengidentifikasi pinjaman bank yang beresiko, menggunakan R.
  4. Understanding Machine Learning
    Apa sebenarnya machine learning? Berikut ini artikel singkat dilengkapi ilustrasi yang memberikan pengenalan dasar mengenai machine learning dan metode-metodenya
  5. What Do Frameworks Offer Data Scientists that Programming Languages Lack?
    Saat ini makin banyak programmer dan data saintis yang lebih memilih bekerja menggunakan framework daripada bahasa pemrograman, dan menganggapnya sebagai pilihan yang lebih modern dan canggih. Apa sebenarnya kelebihan framework yang tidak dimiliki oleh bahasa pemrograman?
  6. Visualizing Tennis Grand Slam Winners Performances
    Data visualization of sports historical results is one of the means by which champions strengths and weaknesses comparison can be outlined. In this tutorial, we show what plots flavors may help in champions performances comparison, timeline visualization, player-to-player and player-to-tournament relationships. We are going to use the Tennis Grand Slam Tournaments results as outlined by the ESP Visualisasi data dalam bidang olah raga adalah salah satu cara untuk membandingkan kekuatan dan kelemahan para juara dari masa ke masa. Dalam tutorial ini ditunjukkan bagaimana plot dan grafik dapat membantu dalam membandingkan performance pemain tersebut. Data yang digunakan adalah data Tennis Grand Slam Tournaments yang ditampilkan situs ESP di tabel ESPN site tennis history.
  7. Advanced Apache NiFi Flow Techniques
    Tutorial mengenai bagaimana memback-up Apache Nifi flow yang sedang berjalan, menyimpannya ke dalam disk, untuk kemudian menggabungkannya kembali dengan data dan metadata, dan melanjutkan eksekusinya atau me-restart-nya di waktu yang akan datang.

Rilis produk

  1. Apache Scio versi 0.3.0
    Apache Scio, Scala API untuk Apache Beam dirilis versi 0.3.0-nya. Ini merupakan rilis non-beta yang pertama yang dibuat di atas Apache Beam SDK, sedangkan rilis sebelumnya dibangun di atas Google Cloud Dataflow SDK.
  2. Apache Kafka 0.10.2.1
    Rilis ini adalah bug-fix, yang me-resolve 29 issue dari rilis sebelumnya.
  3. Apache Kylin 2.0.0 released
    Apache Kylin adalah Engine Analytics terdistribusi, menyediakan SQL interface dan OLAP untuk Hadoop.
  4. Apache Mahout 0.13.0
    Mencakup : Peningkatan kemudahan dalam melakukan komputasi matrix langsung di GPU yang menghasilkan peningkatan kinerja yang signifikan, penyederhanaan framework untuk menambahkan algoritma baru, dll.
  5. Apache® CarbonData™ as a Top-Level Project
    Apache CarbobData adalah format file kolumnar terindeks untuk melakukan data analytics di atas platform Big Data (Apache Hadoop, Apache Spark, dll) yang mempercepat query pada data berskala petabytes.

Tertarik dengan Big Data beserta ekosistemnya? Gabung