:::: MENU ::::

Posts Categorized / Blockchain

  • Nov 23 / 2017
  • Comments Off on Seputar Big Data Edisi #39
Artificial Intelligece, Big Data, Blockchain, Hadoop

Seputar Big Data Edisi #39

Beberapa tema yang tersaji minggu ini, Rilis Hadoop 2.9.0, bagaimana AI mempercepat pengembangan obat, potensi blockchain dan big data, hingga [FREE BOOK] memahami dasar-dasar algoritma machine learning yang dapat difahami oleh siswa ataupun pembaca non-expert.

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu ketiga bulan November 2017

Artikel dan Berita

  1. Big data and machine learning algorithms could increase risk of collusion: ACCC
    Anggapan yang umum selama ini adalah, penggunaan data dan teknologi informasi dapat meningkatkan transparansi dan fairness, namun ternyata hal sebaliknya dapat juga terjadi. Komisi pengawasan persaingan usaha dan perlindungan konsumen Australia (ACCC) memberikan ikhtisar mengenai kemungkinan terjadinya kasus di mana algoritma machine learning dapat digunakan sebagai alat untuk melakukan pelanggaran hukum dalam persaingan usaha.
  2. The Big Idea Behind Big Data
    Salah satu teori yang sangat powerful dan banyak digunakan, terutama dalam big data, adalah network theory. Mulai dari bagaimana ‘memotong’ penyebaran penyakit menular, memahami dan memprediksi perekonomian, mendeteksi jaringan teroris, sampai dengan meningkatkan penjualan. Artikel ini mengupas dengan menarik mengenai teori ini.
  3. Belong partners with American Cancer Society to help beat cancer with AI
    Hari ini, Belong: Beating Cancer Together – aplikasi chat yang menghubungkan antara pasien dengan dokter dan profesional – telah mengumumkan kemitraan dengan American Cancer Society. Belong bukan hanya aplikasi chat dan komunikasi, tetapi juga mengkombinasikan AI, Machine Learning dan Big Data, yang membantu pasien untuk memperoleh informasi, edukasi dan bantuan pribadi.
  4. How AI Is Helping Speed Drug Development
    Pengembangan obat adalah proses yang rumit dan memakan waktu yang lama. Untuk sebuah obat sampai dapat dikonsumsi pasien rata-rata memerlukan waktu 12 tahun. Bagaimana AI dapat membantu mempercepatnya?
  5. Blockchain and Big Data: When Two Super Technologies Meet, What Happens?
    Blockchain menjadi fenomena baru yang berkembang dengan pesat. Apa itu blockchain, apa hubungannya dengan big data, bagaimana pemanfaatannya dan bagaimana peluangnya di masa depan?
  6. China: Police ‘Big Data’ Systems Violate Privacy, Target Dissent
    Big Data adalah alat yang dapat digunakan untuk kebaikan, namun juga dapat digunakan untuk mengekang hak asasi manusi. HRW menyerukan Pemerintah China untuk menghentikan pemantauan dan pengumpulan data terhadap masyarakatnya, sebelum mereka memiliki hukum yang jelas mengenai perlindungan privasi. Saat ini pemerintah China mengawasi dan mencatat berbagai detail informasi dari ratusan juta rakyat biasa, dan menggunakan data tersebut untuk mengidentifikasi mereka yang memiliki pemikiran yang tidak sejalan dengan pemerintah. Selanjutnya pemerintah melakukan pengintaian terhadap orang-orang tersebut.

Tutorial dan pengetahuan teknis

  1. Cassandra to Kafka Data Pipeline (Part 2)
    Tutorial berikut merupakan bagian kedua dari pemanfaatan Cassandra dan Kafka. Pada bagian ini akan dijelaskan mengenai Change Data Capture pada Cassandra.
  2. How to Build a Geographic Dashboard with Real-Time Data
    Dalam posting ini, diperlihatkan bagaimana membangun dashboard geografis interaktif menggunakan Displayr, Plotly dan R. Hal ini sangat menarik karena menggunakan studi kasus untuk melacak posisi real-time pesawat militer.
  3. How to Prepare a Photo Caption Dataset for Training a Deep Learning Model
    Dalam tutorial ini akan diperlihatkan bagaimana mempersiapkan foto dan deskripsi tekstual yang siap dalam mengembangkan model deep learning untuk membuat foto caption otomatis.
  4. [DATASET] YouTube-8M Dataset
    Open dataset kali ini adalah YouTube-8M, yaitu kumpulan video yang sudah ditandai, terdiri dari jutaan ID video YouTube dan label terkait dari beragam kosa kata dari 4700+ entitas visual. Google menyatakan bahwa data ini dirancang untuk dapat digunakan untuk melakukan training model dasar dalam waktu satu hari dengan satu mesin, maupun untuk melakukan berbagai eksplorasi mendalam dengan model yang lebih kompleks, yang dapat memakan waktu berhari-hari bahkan berminggu-minggu.
  5. [FREE EBOOK] Understanding Machine Learning: From Theory to Algorithms
    Machine learning adalah salah satu bidang ilmu yang paling cepat berkembang, dengan aplikasi yang luas. Buku ini memberikan penjelasan teoritis tentang gagasan yang mendasari machine learning dan derivasi matematis yang mengubahnya menjadi algoritma praktis. Buku ini menyajikan dasar-dasar dan algoritma machine learning dengan cara yang dapat difahami oleh siswa maupun pembaca non-expert dalam bidang statistik, ilmu komputer, matematika, dan teknik.

Rilis produk

  1. Apache Hadoop 2.9.0 released
    Apache Hadoop 2.9.0 dirilis baru-baru ini. Ini merupakan rilis pertama dari Hadoop 2.9.x, dan mencakup fitur-fitur baru yang bersifat major seperti misalnya Timeline Service, YARN Federation, YARN Web UI, HDFS, dan CapacityScheduler API
  2. Apache Kafka 0.11.0.2 Released
    Apache Kafka versi 0.11.0.2 telah dirilis. Di dalamnya meliputi beberapa perbaikan penting termasuk satu bug fixing yang berkaitan dengan data loss.
  3. Apache ZooKeeper 3.4.11
    Rilis 3.4.11 Apache Zookeper mencakup beberapa bug fixes dan perbaikan.
  4. Apache Phoenix 4.13 released
    Apache Phoenix memungkinkan OLTP berbasis SQL dan analytics operasional untuk Apache Hadoop menggunakan Apache HBase sebagai penyimpanan, dan menyediakan integrasi dengan ekosistem Apache lain seperti Spark, Hive, Pig, Flume, dan MapReduce.
    Phoenix versi 4.x kompatibel dengan HBase 0,98 dan 1,3. Rilis 4.13.0 ini mencakup perbaikan pencatatan statistik, perbaikan bug kritikal untuk pembuatan snapshot, dan perbaikan bug lainnya.
  5. Apache Hive 2.3.2 Released
    Apache Hive 2.3.2 dirilis minggu ini. Rilis ini mencakup bug fix di beberapa sub komponen, termasuk klien metastore Hive dan Kerberos.

 

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
  • Nov 02 / 2017
  • Comments Off on Seputar Big Data Edisi #36
Apache, Big Data, Blockchain, Hadoop, Implementation, Spark

Seputar Big Data Edisi #36

Beberapa artikel teknis menarik mengenai Keras – sebuah Python Deep Learning library, pemanfaatan Apache Flink untuk risk engine, perbandingan antara Apache Arrow, Parquet dan ORC, serta tutorial mengenai penggunaan Spark dan SparkSQL untuk memproses file csv. Dari segmen news ditampilkan penerapan big data analytics oleh PT Pos Indonesia, MIT yang membangun FeatureHub untuk crowdsourcing big data analytics, dan implikasi blockchain bagi industri asuransi. Tidak ketinggalan juga beberapa rilis open source, diantaranya yaitu Apache Spark 2.1.2. Hive, Pandas, dan OpenNLP.

Kumpulan berita, artikel, tutorial dan blog mengenai Big Data yang dikutip dari berbagai site. Berikut ini beberapa hal menarik yang layak untuk dibaca kembali selama minggu 4 bulan Oktober 2017.

Artikel dan Berita

  1. The Amazing Ways Spotify Uses Big Data, AI And Machine Learning To Drive Business Success
    Spotify, layanan musik on-demand terbesar di dunia, dikenal sebagai pendobrak batas teknologi. Perusahaan musik digital dengan lebih dari 100 juta pengguna ini terus meningkatkan kemampuan layanan dan teknologinya melalui beberapa akuisisi serta pemanfaatan big data, kecerdasan buatan dan machine learning.
  2. Crowdsourcing big-data analysis
    Langkah pertama dalam proses analisis big data dalah identifikasi fitur, yaitu data poin yang memiliki nilai prediktif, yang berguna dalam proses analisis. Langkah ini biasanya memerlukan intuisi manusia. Peneliti MIT membangun sebuah sistem kolaborasi, yang diberi nama FeatureHub. Dengan alat ini diharapkan proses identifikasi fitur dapat dilakukan secara efisien dan efektif. Dengan FeatureHub, para data saintis dan domain expert dapat masuk ke dalam sebuah situs untuk mereview permasalahan dan mengajukan fitur yang akan digunakan. FeatureHub kemudian akan melakukan pengetesan berbagai kemungkinan kombinasi fitur tersebut terhadap target data, untuk menentukan kombinasi mana yang paling tepat untuk permasalahan tertentu.
  3. Keuangan Inklusif, PT Pos Bangun Big Data Analytic
    Hingga kini, baru 36 persen masyarakat Indonesia yang memiliki akun bank. Sedangkan 64 persen masyarakat yang tinggal di pelosok belum tersentuh keuangan inklusif karena sulitnya akses ke perbankan. Untuk membantu masyarakat tersebut, PT Pos tengah membangun big data analytic. Lewat big data analytic, Pos akan membuat kredit skoring yang nantinya bisa dikerjasamakan dengan perbankan untuk penyaluran pembiayaan.
  4. What PredictionIO does for machine learning and Spark
    Apache PredictionIO dibangun di atas Spark dan Hadoop, dan menyediakan template yang dapat dikustomisasi untuk task-task yang umum.
    Aplikasi mengirimkan data ke server event untuk melakukan training model, kemudian meng-query engine untuk mendapatkan prediksi berdasarkan model tersebut. Kemudahan apa yang ditawarkan oleh Apache PredictionIO?
  5. Blockchain Implications Every Insurance Company Needs To Consider Now
    Teknologi blockchain sangat berpotensi mengguncang industri asuransi dan mengubah cara berbagi data, memproses klaim dan mencegah fraud. Namun implementasinya di industri asuransi saat ini masih dalam tahap eksplorasi awal. Untuk dapat merealisasikan potensi blockchain yang sangat besar implikasinya tersebut, Industri asuransi perlu secara aktif bekerja sama dengan para pionir, regulator, dan pakar-pakar industri. Perusahaan-perusahaan asuransi pun harus mulai mencoba memanfaatkan blockchain dalam proses internal mereka untuk mendapatkan pembelajaran guna memanfaatkan teknologi ini.

Tutorial dan Pengetahuan Teknis

  1. 7 Steps to Mastering Deep Learning with Keras
    Apakah anda tertarik untuk mempelajari Keras? Apakah Anda sudah memiliki pemahaman tentang bagaimana neural network bekerja? Artikel berikut ini menyajikan tujuh langkah praktis untuk menguasai dasar-dasar Keras dengan mudah dan cepat.
  2. StreamING Machine Learning Models: How ING Adds Fraud Detection Models at Runtime with Apache Flink®
    Artikel ini menjelaskan bagaimana ING menggunakan Apache Flink untuk risk engine mereka. Mereka menggunakan Apache Spark, Knime, dan Apache Zeppelin untuk training model secara batch dan menggunakan Flink untuk komponen real-time. Mereka menggunakan data PMML, yang dikirim melalui Kafka, untuk memperbarui aplikasi Flink. Arsitektur yang digunakan memungkinkan mereka menerapkan algoritma baru dengan zero downtime, seketika.
  3. Apache Arrow vs. Parquet and ORC: Do we really need a third Apache project for columnar data representation?
    Setelah Apache Parquet dan ORC, muncullah Apache Arrow sebagai representasi format data kolumnar. Apakah kemunculan Arrow menawarkan kelebihan atau perbedaan dibanding dua format yang lainnya? Artikel ini membahas dengan detail mengenai kolumnar data format dan perbandingan di antara ketiga format tersebut, lengkap dengan benchmark.
  4. ETL Pipeline to Transform, Store and Explore Healthcare Dataset With Spark SQL, JSON and MapR-DB
    Tutorial ini menjelaskan cara menggunakan Spark untuk membaca data dari file CSV, mengubahnya menjadi skema yang terdefinisi dengan baik (dalam hal ini Scala Case Class), dan melakukan query menggunakan SparkSQL. Ada juga contoh kode untuk menyimpan data di MapR-DB dan membacanya kembali.

Rilis Produk

  1. Spark Release 2.1.2
    Spark 2.1.2 baru saja dirilis. Ada lebih dari 100 perbaikan bug dan berbagai penyempurnaan pada versi ini.
  2. Pandas v0.21.0
    Ini adalah major rilis dari 0,20,3 mencakup sejumlah perubahan, deprecation, fitur baru, penyempurnaan, dan peningkatan kinerja API serta sejumlah besar perbaikan bug. User sangat disarankan melakukan upgrade ke versi ini.
  3. Hive – Version 2.3.1
    Hive versi 2.3.1 dirilis minggu lalu dengan beberapa bug fixing dan penyempurnaan.
  4. Apache OpenNLP 1.8.3
    Rilis ini memperkenalkan beberapa fitur baru, perbaikan bug, dan penyempurnaan. Versi ini memerlukan Java 1.8 dan Maven 3.3.9.

 

Contributor :


Tim idbigdata
always connect to collaborate every innovation 🙂
  • Oct 31 / 2017
  • Comments Off on Teknologi Blokchain akan Menghubungkan Seluruh Industri
Artificial Intelligece, Big Data, Blockchain, Implementation, IoT, Uncategorized

Teknologi Blokchain akan Menghubungkan Seluruh Industri

Blockchain adalah topik yang hangat dan diminati banyak orang saat ini. Teknologi blockchain dianggap mampu mengatasi berbagai permasalahan yang berkaitan dengan teknologi, profesional maupun personal. Blockchain dipandang sebagai solusi yang elegan dan aman, yang dapat membuka berbagai kemungkinan transaksi. Namun meskipun trend adopsi blockchain ini cukup agresif, masih belum banyak pembahasan mengenai potensi pengaruhnya terhadap proses transaksi di berbagai sektor industri.

Blockchain banyak disebut dalam konteks pembahasan cryptocurrency, namun sesungguhnya kekuatan blockchain adalah pada fleksibilitas transaksionalnya, dan kegunaannya jauh lebih luas daripada sekedar pertukaran mata uang saja.

Blockchain bersifat ‘transaction agnostic’.
Hampir semua transaksi di dunia saat ini melibatkan banyak pihak di dalam setiap prosesnya. Misalnya dalam proses jual beli rumah atau penandatanganan kontrak, banyak orang atau elemen terlibat di dalamnya.

Industri-industri perbankan, real estat, pinjaman hipotek, semuanya dibangun di atas jutaan transaksi kecil semacam ini. Dari transaksi-transaksi kecil tersebut akan timbul sejumlah pajak dan biaya-biaya lain. Penggunaan blockchain dapat menghilangkan ‘serpihan’ transaksi semacam ini, sehingga memangkas biaya dan waktu yang diperlukan, dan menghilangkan banyak perantara yang terlibat dalam sebuah transaksi.

Seperti yang di jelaskan oleh François Zaninotto : “Blockchain adalah buku besar fakta, direplikasi di beberapa komputer yang dipasang di jaringan peer-to-peer. Fakta bisa berupa apapun, mulai dari transaksi moneter hingga signature konten. Anggota jaringan adalah individu anonim yang disebut nodes. Semua komunikasi di dalam jaringan memanfaatkan kriptografi untuk mengidentifikasi pengirim dan penerima dengan aman. Bila sebuah node ingin menambahkan fakta ke buku besar, sebuah konsensus terbentuk dalam jaringan untuk menentukan di mana fakta ini seharusnya muncul di buku besar; Konsensus ini disebut block.”
Teknologi ini secara konseptual bisa dipandang sebagai sebuah jaringan terdistribusi yang aman, yang terbentuk dari orang-orang yang terverifikasi.

Penerapan aplikasi teknologi blockchain lebih luas dari yang dibayangkan sebelumnya, dan sudah ada beberapa indikasi pengembangannya. Salah satunya adalah adanya platform prototipe dan aplikasi yang sudah di deploy. Indikasi lain adalah adanya investasi berkelanjutan oleh banyak VC, dan pengembangan berbagai platform aplikasi. Dan yang tidak kalah pentingnya, proses pembentukan konsorsium dan kemitraan juga sudah berjalan. IBM saat ini sedang bekerja sama dengan tujuh bank Eropa untuk mengembangkan platform blockchain, dan konsorsium R3CEV dibentuk untuk memajukan teknologi blockchain terutama di bidang keuangan.

Topik blockchain ini menjadi salah satu tema yang dikupas pada meetUp ke #18 idbigdata yang diselenggarakan di Bina Nusantara University beberapa waktu lalu. Deden Hasanudin (Solution Lead IBM Global Business Services- IBM) membawa judul “Berkenalan dengan Blockchain, Teknologi dibalik Bitcoin”, dapat idbigdata-ers saksikan kembali di channel youtube idbigdata.


Sumber : https://www.forbes.com/sites/steveandriole/2017/10/25/blockchain-ai-will-rewire-whole-industries/#653563ad1e89

Contributor :


Vinka Palupi
pecinta astronomi yang sejak kecil bercita-cita menjadi astronaut, setelah dewasa baru sadar kalau tinggi badannya tidak akan pernah cukup untuk lulus seleksi astronaut.

M. Urfah
Penyuka kopi dan pasta (bukan copy paste) yang sangat hobi makan nasi goreng.
Telah berkecimpung di bidang data processing dan data warehousing selama 12 tahun.
Salah satu obsesi yang belum terpenuhi saat ini adalah menjadi kontributor aktif di forum idBigdata.
Tertarik dengan Big Data beserta ekosistemnya? Gabung